skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Jiuyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Not AvaDisulfide-containing synthetic polypeptides hold significant promise as biodegradable and biocompatible carriers for controlled drug and gene delivery, enabling triggered therapeutic release with reduced cytotoxicity. However, disulfide incorporation remains challenging, whether through direct polymerization of disulfide-containing monomers or postpolymerization modification. In this work, we present an innovative and simple strategy to incorporate disulfide bonds into polypeptides using ring-opening polymerization of the N-carboxyanhydride of homocysteine, a thiol-containing amino acid. The polymerization was well-controlled, yielding repeating units up to 100 with narrow dispersity. The pendant side chains were readily converted into various GSH-responsive moieties, including anionic, neutral, zwitterionic, and cationic groups, as well as therapeutic agents toward a wide range of biomedical applications. The drug-loaded amphiphilic polymer-drug conjugates displayed triggered release of intact drug and potent anticancer activities. Furthermore, cationic polyhomocysteine derivatives effectively delivered siRNA, eGFP mRNA, and more complex CRISPR components with extremely low cytotoxicity and excellent transfection efficiency.ilable 
    more » « less
    Free, publicly-accessible full text available November 10, 2026
  2. A novel drug delivery system hitchhiking albumin as a drug carrier with tuneable redox-responsive drug release. 
    more » « less
  3. In this work, a NIR emitting dye, p-toluenesulfonate (IR-813) was explored as a model precursor to develop red emissive carbon dots (813-CD) with solvatochromic behavior with a red-shift observed with increasing solvent polarity. The 813-CDs produced had emission peaks at 610 and 698 nm, respectively, in water with blue shifts of emission as solvent polarity decreased. Subsequently, 813-CD was synthesized with increasing nitrogen content with polyethyleneimine (PEI) to elucidate the change in band gap energy. With increased nitrogen content, the CDs produced emissions as far as 776 nm. Additionally, a CD nanocomposite polyvinylpyrrolidone (PVP) film was synthesized to assess the phenomenon of solid-state fluorescence. Furthermore, the CDs were found to have electrochemical properties to be used as an additive doping agent for PVP film coatings. 
    more » « less
  4. null (Ed.)