skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chen, Katherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The United Nations Sustainable Development Goals (UN SDGs) are the focus for a Research Experience for Teachers (RET) Site in Engineering at X University. The relevant and meaningful contexts of the SDGs allow middle and high school teachers and their students to easily make connections between research in a university lab setting to Science, Technology, Engineering, and Math (STEM) concepts in their classroom. Lesson plans inspired by the UN SDGs research experience were developed as an “integrated STEM” problem solving activity by each of the RET teachers. Ten (10) teachers comprising of both pre-service and in-service middle or high school teachers have participated in each cohort over the two years of the NSF RET grant thus far. Six weeks of authentic summer research takes place in 5 different faculty labs at X University under the mentorship of faculty and their graduate students or postdoc. Examples of the research projects include “Photocatalysis for Clean Energy and Environment,” “Genetically Engineering Plasmid DNA molecules to address Tuberculosis Antibiotic Resistance,” and “New Water-Based Technology for Plastic Recycling.” RET participants also attend a weekly coffee session to help guide the teachers through the research process and a weekly ½-day professional development (PD) session to translate the research experience into a classroom lesson plan that aligns to state standards, as well as evidence-backed curriculum design and teaching strategies. Teacher cohort building and community is fostered through group lunches and additional activities (e.g., coordinated lab visits, behind the scenes tour of a local science museum, and industry panel). For evaluation of the RET program, pre/post-surveys measured the teacher’s self-reported ability, confidence, understanding, and frequency of use of the Engineering Design Process (EDP), Integrated STEM, and the UN Sustainable Development Goals. Formative assessment was conducted throughout the summer on various aspects of the RET through surveys and regular check-ins with the teachers. At the end of the summer, focus groups were conducted by an external evaluator for both the teacher participants and the research mentors. Both teachers and mentors declared the program was well planned and executed. The teachers developed close bonds and connections, learned a lot from each other, had meaningful research experiences, and developed a sense of community. The research mentors reported that the teachers provided useful research contributions, were enthusiastic about the research, had genuine lab experiences, developed professional skills, and built good community connections. Areas for improvement included clear expectations for everyone, reducing steep learning curves, and consistency of mentoring across the labs. The RET program continues into the academic year with occasional meetings to report on the implementation of their research-inspired lesson plan in their classroom. The RET participants share that they are bringing in the “real world” relevance to their students with an integrated STEM lens (e.g., climate change and UN SDGs) and that they refer back to their own lab experiences (e.g., importance of measuring chemicals accurately). The research experience has made several positive impacts on the teacher participants that also benefit their students. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  2. Two cohorts of ten (10) first generation students from the local public school district have been recruited to an NSF S STEM scholarship program that provides navigational support in attending and graduating from a STEM-focused private university. The S-STEM funding complements a university scholarship to meet the full demonstrated need of each student for four years, including on-campus housing to ensure that our scholars can fully participate in the college experience. Intentional programming and a mentor network were implemented with an assets-based framework. Student surveys and program evaluation reveal that the scholarship program components that are the most effective and appreciated by the scholars are free summer courses, paid summer research experiences, and a “support team” that connects them to resources and assists them in navigating the university system. Also important to their sense of belonging at the university was the pre-orientation program (similar to a short bridge program) and their cohort of peers in the S-STEM program. Interviews with the S-STEM scholars were conducted alongside interviews with other first generation students not in the S-STEM program. The research study on student experiences revealed that a distributed and unconnected model of student support can be frustrating and ineffective for students. Instead, a core team of people that guides students to navigate the university system and to provide intentional programming at the appropriate times has emerged to be more effective. Thus, we have adapted our project to meet the needs of the students as we hear their stories and learn from them. To capture our students’ experiences and to engage them in co-designing inclusive college experiences within a supportive university system, we plan to have a design charrette with a graphic illustrator where the scholars will collectively share their stories and brainstorm ideas upon deliberate prompts. The facilitation will elevate multiple voices and reinforce learning and highlight interconnections. The graphic recording will translate the real-time conversations and the key ideas into a shared visual. The graphical artwork will serve as a visual representation of the voices of our scholars and serve as a tool to present what is possible for the university to redefine student experiences and set up systems for all students to succeed. Through this project, we aim to demonstrate and document the sufficient resources needed (e.g., human capital) to support the whole student, and in particular students in which the university system was not initially designed for. The findings provide a great opportunity for the university to strengthen student supports with the proper resources and systems for students, especially from historically underrepresented and marginalized groups. 
    more » « less
  3. Abstract

    Bird–building collisions account for 365–988 million bird fatalities every year in the United States alone. Understanding conditions that heighten collision risk is critical to developing effective strategies for reducing this source of anthropogenic bird mortality. Meteorological factors and regional migration traffic may increase collision rates but also may be difficult to disentangle from other effects.

    We used 5 years of bird collision counts in New York City to examine the influence of nocturnal weather conditions and bird migration traffic rates on collisions with buildings during spring and fall.

    We found that seasonally unfavourable winds and conditions that impede visibility are important factors that increase the rates of bird–building collisions during both seasons. Specifically, northerly and westerly winds and low visibility in the spring and southerly and westerly winds and low cloud ceiling height in the fall are associated with higher collision risks.

    Generally, these weather variables associated most strongly with increased collisions when nocturnal bird migration traffic was high, with the exception of low visibility in spring, which was predicted to triple collision rates compared to high visibility, independent of bird migration traffic.

    Synthesis and applications: Although legislation to turn off unnecessary nocturnal lighting for the entirety of the migration seasons may be an ultimate goal, a proximate goal invaluable for reducing collisions will be predicting which nights will be of highest risk and using this information to determine when mitigation efforts could be most effective.

     
    more » « less