A central goal in creating long-distance quantum networks and distributed quantum computing is the development of interconnected and individually controlled qubit nodes. Atom-like emitters in diamond have emerged as a leading system for optically networked quantum memories, motivating the development of visible-spectrum, multi-channel photonic integrated circuit (PIC) systems for scalable atom control. However, it has remained an open challenge to realize optical programmability with a qubit layer that can achieve high optical detection probability over many optical channels. Here, we address this problem by introducing a modular architecture of piezoelectrically actuated atom-control PICs (APICs) and artificial atoms embedded in diamond nanostructures designed for high-efficiency free-space collection. The high-speed four-channel APIC is based on a splitting tree mesh with triple-phase shifter Mach–Zehnder interferometers. This design simultaneously achieves optically broadband operation at visible wavelengths, high-fidelity switching (>40dB) at low voltages, submicrosecond modulation timescales (>30MHz), and minimal channel-to-channel crosstalk for repeatable optical pulse carving. Via a reconfigurable free-space interconnect, we use the APIC to address single silicon vacancy color centers in individual diamond waveguides with inverse tapered couplers, achieving efficient single photon detection probabilities (∼15%) and second-order autocorrelation measurements
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
g (2)(0)<0.14 for all channels. The modularity of this distributed APIC–quantum memory system simplifies the quantummore » -
Free, publicly-accessible full text available October 21, 2023