skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chen, Kevin C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solid-state quantum emitters have emerged as a leading quantum memory for quantum networking applications. However, standard optical characterization techniques are neither efficient nor repeatable at scale. Here we introduce and demonstrate spectroscopic techniques that enable large-scale, automated characterization of colour centres. We first demonstrate the ability to track colour centres by registering them to a fabricated machine-readable global coordinate system, enabling a systematic comparison of the same colour centre sites over many experiments. We then implement resonant photoluminescence excitation in a widefield cryogenic microscope to parallelize resonant spectroscopy, achieving two orders of magnitude speed-up over confocal microscopy. Finally, we demonstrate automated chip-scale characterization of colour centres and devices at room temperature, imaging thousands of microscope fields of view. These tools will enable the accelerated identification of useful quantum emitters at chip scale, enabling advances in scaling up colour centre platforms for quantum information applications, materials science and device design and characterization. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Current challenges for quantum repeaters using solid-state emitters include incorporating (1) multiple nearly-indistinguishable emitters (2) into an interposer with pho-tonic processing capabilities. We develop a process flow that targets both of these tasks.

     
    more » « less
  3. We demonstrate heterogeneous integration of solid-state nanophotonic cavities into a scalable photonic platform as an efficient optical interface for quantum memories based on diamond color centers.

     
    more » « less
  4. We present an efficient microwave and optical interface for quantum memories at 1.3 K based on tin-vacancy color centers in diamond and scalable integrated photonics.

     
    more » « less
  5. null (Ed.)