Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Plasmon-driven photocatalysis has emerged as a paradigm-shifting approach, based on which the energy of photons can be judiciously harnessed to trigger interfacial molecular transformations on metallic nanostructure surfaces in a regioselective manner with nanoscale precision. Over the past decade, the formation of aromatic azo compounds through plasmon-driven oxidative coupling of thiolated aniline-derivative adsorbates has become a testbed for developing detailed mechanistic understanding of plasmon-mediated photochemistry. Such photocatalytic bimolecular coupling reactions may occur not only between thiolated aniline-derivative adsorbates but also between their nonthiolated analogs. How the nonthiolated adsorbates behave differently from their thiolated counterparts during the plasmon-driven coupling reactions, however, remains largely unexplored. Here, we systematically compare an alkynylated aniline-derivative, para-ethynylaniline, to its thiolated counterpart, para-mercaptoaniline, in terms of their adsorption conformations, structural flexibility, photochemical reactivity, and transforming kinetics on Ag nanophotocatalyst surfaces. We employ surface-enhanced Raman scattering as an in situ spectroscopic tool to track the detailed structural evolution of the transforming molecular adsorbates in real time during the plasmon-driven coupling reactions. Rigorous analysis of the spectroscopic results, further aided by density functional theory calculations, lays an insightful knowledge foundation that enables us to elucidate how the alteration of the chemical nature of metal–adsorbate interactions profoundly influences the transforming behaviors of the molecular adsorbates during plasmon-driven photocatalytic reactions.more » « less
-
null (Ed.)Optically excited plasmonic nanostructures exhibit unique capabilities to catalyze interfacial chemical transformations of molecules adsorbed on their surfaces in a regioselective manner through anomalous reaction pathways that are inaccessible under thermal conditions. The mechanistic complexity of plasmon-driven photocatalysis is intimately tied to a series of photophysical and photochemical processes associated with the radiative and non-radiative decay of localized plasmon resonances in metallic nanostructures. Plasmon-enhanced Raman spectroscopy combines ultrahigh detection sensitivity with unique time-resolving and molecular finger-printing capabilities, ideal for detailed kinetic and mechanistic studies of photocatalytic interfacial transformations of molecular adsorbates residing in the plasmonic hot spots. Through systematic case studies of several representative reactions, we demonstrate how plasmon-enhanced Raman spectroscopy can be judiciously utilized as a unique in situ spectroscopic tool to fine-resolve the detailed molecule-transforming processes on the surfaces of optically excited plasmonic nanostructures in real time during the photocatalytic reactions. We further epitomize the mechanistic insights gained from in situ plasmon-enhanced Raman spectroscopic measurements into several central materials design principles that can be employed to guide the rational optimization of the photocatalyst structures and the nanostructure-molecule interfaces for plasmon-mediated surface chemistry.more » « less