skip to main content

Search for: All records

Creators/Authors contains: "Chen, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2023
  2. Hard x-rays produced by intense laser-produced fast electrons interacting with solids are a vital source for producing radiographs of high-density objects and implosion cores for inertial confinement fusion. Accurate calculation of hard x-ray sources requires a three-dimensional (3D) simulation geometry that fully models the electron transport dynamics, including electron recirculation and the generation of absolute photon yields. To date, 3D simulations of laser-produced bremsstrahlung photons over tens of picoseconds and code benchmarking have not been performed definitively. In this study, we characterize sub-picosecond laser-produced fast electrons by modeling angularly resolved bremsstrahlung measurements for refluxing and non-refluxing targets using the 3Dmore »hybrid particle-in-cell (PIC), Large Scale Plasma code. Bremsstrahlung radiation and escaped electron data were obtained by focusing a 50-TW Leopard laser (15 J, 0.35 ps, 2 × 10 19 W/cm 2 ) on a 100- μm-thick Cu foil and a Cu with a large plastic backing (Cu–CH target). Data for both the Cu and Cu–CH targets were reproduced for simulations with a given set of electron parameters. Comparison of the simulations revealed that the hard x-ray emission from the Cu target was significantly longer in duration than that from the Cu–CH target. The benchmarked hybrid PIC code could prove to be a powerful tool in the design and optimization of time- and angular-dependent bremsstrahlung sources for flash x-ray and gamma-ray radiography.« less
    Free, publicly-accessible full text available September 1, 2023
  3. Free, publicly-accessible full text available June 1, 2023
  4. Free, publicly-accessible full text available January 1, 2023
  5. In recent years, semi-supervised learning has been widely explored and shows excellent data efficiency for 2D data. There is an emerging need to improve data efficiency for 3D tasks due to the scarcity of labeled 3D data. This paper explores how the coherence of different modalities of 3D data (e.g. point cloud, image, and mesh) can be used to improve data efficiency for both 3D classification and retrieval tasks. We propose a novel multimodal semi-supervised learning framework by introducing instance-level consistency constraint and a novel multimodal contrastive prototype (M2CP) loss. The instance-level consistency enforces the network to generate consistent representationsmore »for multimodal data of the same object regardless of its modality. The M2CP maintains a multimodal prototype for each class and learns features with small intra-class variations by minimizing the feature distance of each object to its prototype while maximizing the distance to the others. Our proposed framework significantly outperforms all the state-of-the-art counterparts for both classification and retrieval tasks by a large margin on the modelNet10 and ModelNet40 datasets.« less
  6. Focusing on graph-structured prediction tasks, we demon- strate the ability of neural networks to provide both strong predictive performance and easy interpretability, two proper- ties often at odds in modern deep architectures. We formulate the latter by the ability to extract the relevant substructures for a given task, inspired by biology and chemistry appli- cations. To do so, we utilize the Local Relational Pooling (LRP) model, which is recently introduced with motivations from substructure counting. In this work, we demonstrate that LRP models can be used on challenging graph classification tasks to provide both state-of-the-art performance and inter- pretability, throughmore »the detection of the relevant substructures used by the network to make its decisions. Besides their broad applications (biology, chemistry, fraud detection, etc.), these models also raise new theoretical questions related to com- pressed sensing and to computational thresholds on random graphs.« less
  7. Electromigration (EM) becomes a major concern for VLSI circuits as the technology advances in the nanometer regime. With Korhonen equations, EM assessment for VLSI circuits remains challenged due to the increasing integrated density. VLSI multisegment interconnect trees can be naturally viewed as graphs. Based on this observation, we propose a new graph convolution network (GCN) model, which is called {\it EMGraph} considering both node and edge embedding features, to estimate the transient EM stress of interconnect trees. Compared with recently proposed generative adversarial network (GAN) based stress image-generation method, EMGraph model can learn more transferable knowledge to predict stress distributionsmore »on new graphs without retraining via inductive learning. Trained on the large dataset, the model shows less than 1.5% averaged error compared to the ground truth results and is orders of magnitude faster than both COMSOL and state-of-the-art method. It also achieves smaller model size, 4X accuracy and 14X speedup over the GAN-based method.« less
  8. From the perspective of expressive power, this work compares multi-layer Graph Neural Networks (GNNs) with a simplified alternative that we call Graph-Augmented Multi-Layer Perceptrons (GA-MLPs), which first augments node features with certain multi-hop operators on the graph and then applies an MLP in a node-wise fashion. From the perspective of graph isomorphism testing, we show both theoretically and numerically that GA-MLPs with suitable operators can distinguish almost all non-isomorphic graphs, just like the Weifeiler-Lehman (WL) test. However, by viewing them as node-level functions and examining the equivalence classes they induce on rooted graphs, we prove a separation in expressive powermore »between GA-MLPs and GNNs that grows exponentially in depth. In particular, unlike GNNs, GA-MLPs are unable to count the number of attributed walks. We also demonstrate via community detection experiments that GA-MLPs can be limited by their choice of operator family, as compared to GNNs with higher flexibility in learning.« less
  9. Recent advances in the blockchain research have been made in two important directions. One is refined resilience analysis utilizing game theory to study the consequences of selfish behavior of users (miners), and the other is the extension from a linear (chain) structure to a non-linear (graphical) structure for performance improvements, such as IOTA and Graphcoin. The first question that comes to mind is what improvements that a blockchain system would see by leveraging these new advances. In this paper, we consider three major properties for a blockchain system: α-partial verification, scalability, and finality-duration. We establish a formal framework and provemore »that no blockchain system can achieve ?-partial verification for any fixed constant ?, high scalability, and low finality-duration simultaneously. We observe that classical blockchain systems like Bitcoin achieves full verification (α=1) and low finality-duration, Ethereum 2.0 Sharding achieves low finality-duration and high scalability. We are interested in whether it is possible to partially satisfy the three properties.« less