skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Lisong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper describes a modular framework for the description of electroweak scattering and decay processes, including but not limited to Z-resonance physics. The framework consistently combines a complex-pole expansion near an s-channel resonance with a regular fixed-order perturbative description away from the resonance in a manifestly gauge-invariant scheme. Leading vertex correction contributions are encapsulated in form factors that can be predicted or treated as numerical fit parameters. This framework has been implemented in the publicly available object-oriented C++ library GRIFFIN. Version 1.0 of this library provides Standard Model predictions for the IR-subtracted matrix elements for the process f\bar{f} \to f'\bar{f}' with full NNLO and leading higher-order contributions on the Z-resonance, and with NLO corrections off-resonance. The library can straightforwardly be extended to include higher-order corrections, should they become available, or predictions for new physics models. It can be interfaced with Monte-Carlo programs to account for QED and QCD initial-state and final-state radiation. 
    more » « less
  2. In this proceeding, we highlight the computation of leading fermionic three-loop corrections to electroweak precision observables (EWPOs) accomplished recently. We summarize the numerical analysis and provide an outlook. 
    more » « less
  3. null (Ed.)
    A bstract Measurements of electroweak precision observables at future electron-position colliders, such as the CEPC, FCC-ee, and ILC, will be sensitive to physics at multi-TeV scales. To achieve this sensitivity, precise predictions for the Standard Model expectations of these observables are needed, including corrections at the three- and four-loop level. In this article, results are presented for the calculation of a subset of three-loop mixed electroweak-QCD corrections, stemming from diagrams with a gluon exchange and two closed fermion loops. The numerical impact of these corrections is illustrated for a number of applications: the prediction of the W-boson mass from the Fermi constant, the effective weak mixing angle, and the partial and total widths of the Z boson. Two alternative renormalization schemes for the top-quark mass are considered, on-shell and $$ \overline{\mathrm{MS}} $$ MS ¯ . 
    more » « less