skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Mingguang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The unique two-dimensional structure and outstanding electronic, thermal, and mechanical properties of graphene have attracted the interest of scientists and engineers from various fields. The first step in translating the excellent properties of graphene into practical applications is the preparation of large area, continuous graphene films. Chemical vapour deposition (CVD) graphene has received increasing attention because it provides access to large-area, uniform, and continuous films of high quality. However, current CVD synthetic techniques utilize metal substrates (Cu or Ni) to catalyse the growth of graphene and post-growth transfer of the graphene film to a substrate of interest is critical for most applications such as electronics, photonics, and spintronics. Here we discuss recent advances in the transfer of as-grown CVD graphene to target substrates. The methods that afford CVD graphene on a target substrate are summarized under three categories: transfer with a support layer, transfer without a support layer, and direct growth on target substrates. At present the first two groups dominate the field and research efforts are directed towards refining the choice of the support layer. The support layer plays a vital role in the transfer process because it has direct contact with the atomically thin graphene surface, affecting its properties and determining the quality of the transferred graphene. 
    more » « less
  2. The electrical conductivity of single-walled carbon nanotube (SWNT) networks is strongly enhanced by the high vacuum e-beam deposition of transition metals. In the present communication we demonstrate that it is possible to accomplish the same chemical functionalization reactions at room temperature beginning with simple organometallic precursors. We show that the photochemically induced reactions of solutions of Cr(CO) 6 , Cr(η 6 -benzene)(CO) 3 , and Cr(η 6 -benzene) 2 with thin films of semiconducting, metallic and non-separated SWNT films all lead to strongly enhanced conductivities which produce consistent results for each SWNT type among the three organometallic reagents. We conclude that all three of these reactions lead to the generation of covalent (η 6 -SWNT)Cr(η 6 -SWNT) interconnects which provide conducting pathways in the SWNT films and our results broaden the applicability of the transition metal bis-hexahapto-bond as an electronically conjugating linkage between graphene surfaces. 
    more » « less