skip to main content


Search for: All records

Creators/Authors contains: "Chen, Qian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Voids—the nothingness—broadly exist within nanomaterials and impact properties ranging from catalysis to mechanical response. However, understanding nanovoids is challenging due to lack of imaging methods with the needed penetration depth and spatial resolution. Here, we integrate electron tomography, morphometry, graph theory and coarse-grained molecular dynamics simulation to study the formation of interconnected nanovoids in polymer films and their impacts on permeance and nanomechanical behaviour. Using polyamide membranes for molecular separation as a representative system, three-dimensional electron tomography at nanometre resolution reveals nanovoid formation from coalescence of oligomers, supported by coarse-grained molecular dynamics simulations. Void analysis provides otherwise inaccessible inputs for accurate fittings of methanol permeance for polyamide membranes. Three-dimensional structural graphs accounting for the tortuous nanovoids within, measure higher apparent moduli with polyamide membranes of higher graph rigidity. Our study elucidates the significance of nanovoids beyond the nothingness, impacting the synthesis‒morphology‒function relationships of complex nanomaterials.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract

    Two-dimensional van der Waals materials such as graphene present an opportunity for band structure engineering using custom superlattice potentials. In this study, we demonstrate how self-assemblies of magnetic iron-oxide (Fe3O4) nanospheres stacked on monolayer graphene generate a proximity-induced magnetic superlattice in graphene and modify its band structure. Interactions between the nanospheres and the graphene layer generate superlattice Dirac points in addition to a gapped energy spectrum near the K and K′ valleys, resulting in magnetic confinement of quasiparticles around the nanospheres. This is evidenced by gate-dependent resistance oscillations, observed in our low temperature transport measurements, and confirmed by self-consistent tight binding calculations. Furthermore, we show that an external magnetic field can tune the magnetic superlattice potential created by the nanospheres, and thus the transport characteristics of the system. This technique for magnetic-field-tuned band structure engineering using magnetic nanostructures can be extended to a broader class of 2D van der Waals and topological materials.

     
    more » « less
  3. ABSTRACT

    We present the spatially resolved relationship between the dust-to-gas mass ratio (DGR) and gas-phase metallicity ($Z_{\rm gas}$ or 12 + log(O/H)) (i.e. DGR–$Z_{\rm gas}$ relation) of 11 nearby galaxies with a large-metallicity range (1.5 dex of 12 + log(O/H)) at (sub-)kpc scales. We used the large field-of-view ($\gtrsim$ 3 arcmin) optical pseudo-Integral Field Spectroscopy data taken by the TYPHOON/Progressive Integral Step Method survey, covering the optical size of galaxies, combining them with multiwavelength data [far-ultrviolet (UV) to far-infrared (IR), CO, and H i 21 cm radio]. A large scatter of DGR in the intermediate-metallicity galaxies (8.0 $\lt $ 12 + log(O/H)$\lt $ 8.3) is found, which is in line with dust evolution models, where grain growth begins to dominate the mechanism of dust mass accumulation. In the lowest metallicity galaxy of our sample, Sextans A (12 + log(O/H)$\lt $ 7.6), the star-forming regions have significantly higher DGR values (by 0.5–2 dex) than the global estimates from literature at the same metallicity, but aligns with the DGR values from metal depletion method from damped Lyman alpha systems and high hydrogen gas density regions of Sextans A. Using dust evolution models with a Bayesian Monte Carlo Markov Chain approach suggests: (1) a high supernova dust yield and (2) a negligible amount of photofragmentation by UV radiation, although we note that our sample in the low-metallicity regime is limited to Sextans A. On the other hand, it is also possible that while metallicity influences DGR, gas density also plays a role, indicating an early onset of dust grain growth in the dust mass build-up process despite its low metallicity.

     
    more » « less
  4. Abstract

    Additive manufacturing of solid-state batteries is advantageous for improving the power density by increasing the geometric complexity of battery components, such as electrodes and electrolytes. In the present study, bulk three-dimensional Li1+xAlxTi2−x(PO4)3(LATP) electrolyte samples were prepared using the laser powder bed fusion (L-PBF) additive manufacturing method. Li3PO4(LPO) was added to LATP to compensate for lithium vaporization during processing. Chemical compositions included 0, 1, 3, and 5 wt. % LPO. Resulting ionic conductivity values ranged from 1.4 × 10−6–6.4 × 10−8S cm−1, with the highest value for the sample with a chemical composition of 3 wt. % LPO. Microstructural features were carefully measured for each chemical composition and correlated with each other and with ionic conductivity. These features and their corresponding ranges include: porosity (ranging from 5% to 19%), crack density (0.09–0.15 mm mm−2), concentration of residual LPO (0%–16%), and concentration and Feret diameter of secondary phases, AlPO4 (11%–18%, 0.40–0.61µm) and TiO2 (9%–11%, 0.50–0.78). Correlations between the microstructural features and ionic conductivity ranged from −0.88 to 0.99. The strongest negative correlation was between crack density and ionic conductivity (−0.88), confirming the important role that processing defects play in limiting the performance of bulk solid-state electrolytes. The strongest positive correlation was between the concentration of AlPO4 and ionic conductivity (0.99), which is attributed to AlPO4 acting as a sintering aid and the role it plays in reducing the crack density. Our results indicate that additions of LPO can be used to balance competing microstructural features to design bulk three-dimensional LATP samples with improved ionic conductivity. As such, refinement of the chemical composition offers a promising approach to improving the processability and performance of functional ceramics prepared using binderless, laser-based additive manufacturing for solid-state battery applications.

     
    more » « less
  5. ABSTRACT

    The scatter about the mass-metallicity relation (MZR) has a correlation with the star formation rate (SFR) of galaxies. The lack of evidence of evolution in correlated scatter at z ≲ 2.5 leads many to refer to the relationship between mass, metallicity, and SFR as the Fundamental Metallicity Relation (FMR). Yet, recent high-redshift (z > 3) JWST observations have challenged the fundamental (i.e. redshift-invariant) nature of the FMR. In this work, we show that the cosmological simulations Illustris, IllustrisTNG, and Evolution and Assembly of GaLaxies and their Environment (EAGLE) all predict MZRs that exhibit scatter with a secondary dependence on SFR up to z = 8. We introduce the concept of a ‘strong’ FMR, where the strength of correlated scatter does not evolve with time, and a ‘weak’ FMR, where there is some time evolution. We find that each simulation analysed has a statistically significant weak FMR – there is non-negligible evolution in the strength of the correlation with SFR. Furthermore, we show that the scatter is reduced an additional ∼10–40 per cent at z ≳ 3 when using a weak FMR, compared to assuming a strong FMR. These results highlight the importance of avoiding coarse redshift binning when assessing the FMR.

     
    more » « less
  6. Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.

     
    more » « less
    Free, publicly-accessible full text available May 7, 2025
  7. This paper presents a data-driven framework to quantitatively analyze the disturbance amplification behavior of automated vehicles in car-following (CF). The data-driven framework can be applied to unknown CF controllers based on the concept of empirical frequency response function (FRF). Specifically, a well-known signal processing method, Welch’s method, together with a short time Fourier transformation is developed to extract the empirical transfer functions from vehicle trajectories. The method is first developed assuming a generic linear controller with time-invariant CF control features (e.g., control gains) and later extended to capture time-variant features. The proposed methods are evaluated for estimation consistencies via synthetic data-based simulations. The evaluation includes the performances of the linear approximation accuracy for a linear time-invariant controller, a nonlinear controller, and a linear time-variant controller. Results indicate that our framework can provide reasonably consistent results as theoretical ones in terms of disturbance amplification. Further it can perform better than a linear theoretical analysis of disturbance amplification, particularly when nonlinearity in CF behavior is present. The methods are applied to existing field data collected from vehicles with adaptive cruise control (ACC) on the market. Findings reveal that all tested vehicles tend to amplify disturbances, particularly in low frequency (< 0.5 Hz). Further, the results demonstrate that these ACC vehicles exhibit time-varying features in terms of disturbance amplification ratio depending on the leading vehicle trajectories. 
    more » « less
  8. ABSTRACT

    Polycystins are a family of conserved ion channels, mutations of which lead to one of the most common human genetic disorders, namely, autosomal dominant polycystic kidney disease. Schizosacchromyces pombe possesses an essential polycystin homologue, Pkd2, which directs Ca2+ influx on the cell surface in response to membrane tension, but its structure remains unsolved. Here, we analyzed the structure–function relationship of Pkd2 based on its AlphaFold-predicted structure. Pkd2 consists of three domains, the extracellular lipid-binding domain (LBD), nine-helix transmembrane domain (TMD) and C-terminal cytoplasmic domain (CCD). Our genetic and microscopy data revealed that LBD and TMD are essential for targeting Pkd2 to the plasma membrane from the endoplasmic reticulum. In comparison, CCD ensures the polarized distribution of Pkd2 by promoting its internalization and preventing its clustering in the eisosome, a caveolae-like membrane compartment. The domains of Pkd2 and their functions are conserved in other fission yeast species. We conclude that both extracellular and cytoplasmic domains of Pkd2 are crucial for its intracellular trafficking and function. We propose that mechanosensitive channels can be desensitized through either internalization or clustering in low-tension membrane compartments.

     
    more » « less
  9. Abstract

    As key mediators of cellular communication, extracellular vesicles (EVs) have been actively explored for diagnostic and therapeutic applications. However, effective methods to functionalize EVs and modulate the interaction between EVs and recipient cells are still lacking. Here we report a facile and universal metabolic tagging technology that can install unique chemical tags (e.g., azido groups) onto EVs. The surface chemical tags enable conjugation of molecules via efficient click chemistry, for the tracking and targeted modulation of EVs. In the context of tumor EV vaccines, we show that the conjugation of toll-like receptor 9 agonists onto EVs enables timely activation of dendritic cells and generation of superior antitumor CD8+T cell response. These lead to 80% tumor-free survival against E.G7 lymphoma and 33% tumor-free survival against B16F10 melanoma. Our study yields a universal technology to generate chemically tagged EVs from parent cells, modulate EV-cell interactions, and develop potent EV vaccines.

     
    more » « less