Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Midcircuit measurements (MCMs) are crucial ingredients in the development of fault-tolerant quantum computation. While there have been rapid experimental progresses in realizing MCMs, a systematic method for characterizing noisy MCMs is still under exploration. In this work, we develop a cycle benchmarking (CB)-type algorithm to characterize noisy MCMs. The key idea is to use a joint Fourier transform on the classical and quantum registers and then estimate parameters in the Fourier space, analogous to Pauli fidelities used in CB-type algorithms for characterizing the Pauli-noise channel of Clifford gates. Furthermore, we develop a theory of the noise learnability of MCMs, which determines what information can be learned about the noise model (in the presence of state preparation and terminating measurement noise) and what cannot, which shows that all learnable information can be learned using our algorithm. As an application, we show how to use the learned information to test the independence between measurement noise and state-preparation noise in an MCM. Finally, we conduct numerical simulations to illustrate the practical applicability of the algorithm. Similar to other CB-type algorithms, we expect the algorithm to provide a useful toolkit that is of experimental interest. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Abstract Recently, several quantum benchmarking algorithms have been developed to characterize noisy quantum gates on today’s quantum devices. A fundamental issue in benchmarking is that not everything about quantum noise is learnable due to the existence of gauge freedom, leaving open the question what information is learnable and what is not, which is unclear even for a single CNOT gate. Here we give a precise characterization of the learnability of Pauli noise channels attached to Clifford gates using graph theoretical tools. Our results reveal the optimality of cycle benchmarking in the sense that it can extract all learnable information about Pauli noise. We experimentally demonstrate noise characterization of IBM’s CNOT gate up to 2 unlearnable degrees of freedom, for which we obtain bounds using physical constraints. In addition, we show that an attempt to extract unlearnable information by ignoring state preparation noise yields unphysical estimates, which is used to lower bound the state preparation noise.more » « less
-
In this paper we initiate the study of entanglement-breaking (EB) superchannels. These are processes that always yield separable maps when acting on one side of a bipartite completely positive (CP) map. EB superchannels are a generalization of the well-known EB channels. We give several equivalent characterizations of EB supermaps and superchannels. Unlike its channel counterpart, we find that not every EB superchannel can be implemented as a measure-and-prepare superchannel. We also demonstrate that many EB superchannels can be superactivated, in the sense that they can output non-separable channels when wired in series.We then introduce the notions of CPTP- and CP-complete images of a superchannel, which capture deterministic and probabilistic channel convertibility, respectively. This allows us to characterize the power of EB superchannels for generating CP maps in different scenarios, and it reveals some fundamental differences between channels and superchannels. Finally, we relax the definition of separable channels to include ( p , q ) -non-entangling channels, which are bipartite channels that cannot generate entanglement using p - and q -dimensional ancillary systems. By introducing and investigating k -EB maps, we construct examples of ( p , q ) -EB superchannels that are not fully entanglement breaking. Partial results on the characterization of ( p , q ) -EB superchannels are also provided.more » « less
An official website of the United States government
