skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Shaowei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Development of high‐performance, low‐cost catalysts for electrochemical water splitting is key to sustainable hydrogen production. Herein, ultrafast synthesis of carbon‐supported ruthenium–copper (RuCu/C) nanocomposites is reported by magnetic induction heating, where the rapid Joule's heating of RuCl3and CuCl2at 200 A for 10 s produces Ru–Cl residues‐decorated Ru nanocrystals dispersed on a CuClxscaffold, featuring effective Ru to Cu charge transfer. Among the series, the RuCu/C‐3 sample exhibits the best activity in 1 mKOH toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with an overpotential of only −23 and +270 mV to reach 10 mA cm−2, respectively. When RuCu/C‐3 is used as bifunctional catalysts for electrochemical water splitting, a low cell voltage of 1.53 V is needed to produce 10 mA cm−2, markedly better than that with a mixture of commercial Pt/C+RuO2(1.59 V). In situ X‐ray absorption spectroscopy measurements show that the bifunctional activity is due to reduction of the Ru–Cl residues at low electrode potentials that enriches metallic Ru and oxidation at high electrode potentials that facilitates the formation of amorphous RuOx. These findings highlight the unique potential of MIH in the ultrafast synthesis of high‐performance catalysts for electrochemical water splitting. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Free, publicly-accessible full text available October 1, 2025
  3. Carbon-based functional nanocomposites have emerged as potent antimicrobial agents and can be exploited as a viable option to overcome antibiotic resistance of bacterial strains. In the present study, graphitic carbon nitride nanosheets are prepared by controlled calcination of urea. Spectroscopic measurements show that the nanosheets consist of abundant carbonyl groups and exhibit apparent photocatalytic activity under UV photoirradiation towards the selective production of singlet oxygen. Therefore, the nanosheets can effectively damage the bacterial cell membranes and inhibit the growth of bacterial cells, such as Gram-negative Escherichia coli, as confirmed in photodynamic, fluorescence microscopy, and scanning electron microscopy measurements. The results from this research highlight the unique potential of carbon nitride derivatives as potent antimicrobial agents. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  4. Free, publicly-accessible full text available July 8, 2025
  5. Synergetic interactions between ruthenium and molybdenum oxide weaken H adsorption on ruthenium active sites and hence enhance the electrocatalytic activity towards hydrogen evolution reaction. 
    more » « less
    Free, publicly-accessible full text available July 2, 2025
  6. Free, publicly-accessible full text available June 1, 2025
  7. Metal chalcogenide nanoparticles play a vital role in a wide range of applications and are typically stabilized by organic derivatives containing thiol, amine, or carboxyl moieties, where the nonconjugated particle–ligand interfaces limit the electronic interactions between the inorganic cores and organic ligands. Herein, a wet-chemistry method is developed for the facile preparation of stable platinum chalcogenide (S, Se) nanoparticles capped with acetylene derivatives (e.g., 4-ethylphenylacetylene, EPA). The formation of Pt–C≡ conjugated bonds at the nanoparticle interfaces, which is confirmed by optical and X-ray spectroscopic measurements, leads to markedly enhanced electronic interactions between the d electrons of the nanoparticle cores and π electrons of the acetylene moiety, in stark contrast to the mercapto-capped counterparts with only nonconjugated Pt–S– interfacial bonds, as manifested in spectroscopic measurements and density functional theory calculations. This study underscores the significance of conjugated anchoring linkages in the stabilization and functionalization of metal chalcogenides, a unique strategy for diverse applications. 
    more » « less