- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
02000010000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Shuhong (3)
-
Abdulbaqi, Jalal (2)
-
Gu, Yue (2)
-
Marsic, Ivan (2)
-
Burd, Randall S. (1)
-
Cheng, Megan (1)
-
Hadadan, Saeed (1)
-
Zhang, Ruiyu (1)
-
Zhao, Xinwei (1)
-
Zwicker, Matthias (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce Neural Radiosity, an algorithm to solve the rendering equation by minimizing the norm of its residual, similar as in classical radiosity techniques. Traditional basis functions used in radiosity, such as piecewise polynomials or meshless basis functions are typically limited to representing isotropic scattering from diffuse surfaces. Instead, we propose to leverage neural networks to represent the full four-dimensional radiance distribution, directly optimizing network parameters to minimize the norm of the residual. Our approach decouples solving the rendering equation from rendering (perspective) images similar as in traditional radiosity techniques, and allows us to efficiently synthesize arbitrary views of a scene. In addition, we propose a network architecture using geometric learnable features that improves convergence of our solver compared to previous techniques. Our approach leads to an algorithm that is simple to implement, and we demonstrate its effectiveness on a variety of scenes with diffuse and non-diffuse surfaces.more » « less
-
Abdulbaqi, Jalal ; Gu, Yue ; Chen, Shuhong ; Marsic, Ivan ( , IEEE 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020))null (Ed.)
-
Gu, Yue ; Zhang, Ruiyu ; Zhao, Xinwei ; Chen, Shuhong ; Abdulbaqi, Jalal ; Marsic, Ivan ; Cheng, Megan ; Burd, Randall S. ( , 2019 IEEE International Conference on Healthcare Informatics (ICHI))null (Ed.)