skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Wanying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Flat bands and nontrivial topological physics are two important topics of condensed matter physics. With a unique stacking configuration analogous to the Su–Schrieffer–Heeger model, rhombohedral graphite (RG) is a potential candidate for realizing both flat bands and nontrivial topological physics. Here, we report experimental evidence of topological flat bands (TFBs) on the surface of bulk RG, which are topologically protected by bulk helical Dirac nodal lines via the bulk-boundary correspondence. Moreover, upon in situ electron doping, the surface TFBs show a splitting with exotic doping evolution, with an order-of-magnitude increase in the bandwidth of the lower split band, and pinning of the upper band near the Fermi level. These experimental observations together with Hartree–Fock calculations suggest that correlation effects are important in this system. Our results demonstrate RG as a platform for investigating the rich interplay between nontrivial band topology, correlation effects, and interaction-driven symmetry-broken states. 
    more » « less