skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Determining an individual’s strategic reasoning capability based solely on choice data is a complex task. This complexity arises because sophisticated players might have non-equilibrium beliefs about others, leading to non-equilibrium actions. In our study, we pair human participants with computer players known to be fully rational. This use of robot players allows us to disentangle limited reasoning capacity from belief formation and social biases. Our results show that, when paired with robots, subjects consistently demonstrate higher levels of rationality, compared to when paired with human players. Furthermore, players’ rationality levels are relatively stable across games when paired with robot players, even though those with intermediate rationality levels exhibit inconsistency across games. Leveraging our experimental design, we identify and document potential causes of this inconsistency. 
    more » « less
    Free, publicly-accessible full text available May 7, 2026
  2. Network-based analyses have effectively understood customer preferences through interactions between customers and products, particularly for tailored product design. However, research applying this analysis to diverse customers with varied preferences is limited. This paper introduces a market-segmented network modeling approach, guided by customer preference, to explore heterogeneity in customers’ two-stage decision-making process: consideration-then-choice. In heterogeneous markets, customers with similar characteristics or purchasing similar products can exhibit different decision-making processes. Therefore, this method segments customers based on preferences rather than just characteristics, allowing for more accurate choice modeling. Using joint correspondence analysis, we identify associations between customer attributes and preferred products, characterizing market segments through clustering. We then build individual bipartite customer–product networks and apply the exponential random graph model to compare the product features influencing customer considerations and choices in various market segments. Using a US household vacuum cleaner survey, our method detected different customer preferences for the same product attribute at different decision-making stages. The market-segmentation model outperforms the non-segmented benchmark in prediction, highlighting its accuracy in predicting varied customer behaviors. This study underscores the vital role of preference-guided segmentation in product design, illustrating how understanding customer preferences at different decision stages can inform and refine design strategies, ensuring products align with diverse market needs. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Free, publicly-accessible full text available June 27, 2026
  4. Free, publicly-accessible full text available August 1, 2026
  5. Free, publicly-accessible full text available May 1, 2026
  6. Free, publicly-accessible full text available June 1, 2026
  7. Free, publicly-accessible full text available March 1, 2026
  8. Abstract Artificial intelligence and machine learning frameworks have become powerful tools for establishing computationally efficient mappings between inputs and outputs in engineering problems. These mappings have enabled optimization and analysis routines, leading to innovative designs, advanced material systems, and optimized manufacturing processes. In such modeling efforts, it is common to encounter multiple information (data) sources, each varying in specifications. Data fusion frameworks offer the capability to integrate these diverse sources into unified models, enhancing predictive accuracy and enabling knowledge transfer. However, challenges arise when these sources are heterogeneous, i.e., they do not share the same input parameter space. Such scenarios occur when domains differentiated by complexity such as fidelity, operating conditions, experimental setup, and scale, require distinct parametrizations. To address this challenge, a two-stage heterogeneous multi-source data fusion framework based on the input mapping calibration (IMC) and the latent variable Gaussian process (LVGP) is proposed. In the first stage, the IMC algorithm transforms the heterogeneous input parameter spaces into a unified reference parameter space. In the second stage, an LVGP-enabled multi-source data fusion model constructs a single-source-aware surrogate model on the unified reference space. The framework is demonstrated and analyzed through three engineering modeling case studies with distinct challenges: cantilever beams with varying design parametrizations, ellipsoidal voids with varying complexities and fidelities, and Ti6Al4V alloys with varying manufacturing modalities. The results demonstrate that the proposed framework achieves higher predictive accuracy compared to both independent single-source and source-unaware data fusion models. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  9. Free, publicly-accessible full text available February 1, 2026
  10. Free, publicly-accessible full text available May 1, 2026