skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Chen, Xianfeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The dimensionality of a physical system is one of the major parameters defining its physical properties. The recently introduced concept of synthetic dimension has made it possible to arbitrarily manipulate the system of interest and harness light propagation in different ways. It also facilitates the transformative architecture of system-on-a-chip devices enabling far reaching applications such as optical isolation. In this report, a novel architecture based on dynamically-modulated waveguide arrays with the Su-Schrieffer-Heeger configuration in the spatial dimension is proposed and investigated with an eye on a practical implementation. The propagation of light through the one-dimensional waveguide arrays mimics time evolution of the field in a synthetic two-dimensional lattice. The addition of the effective gauge potential leads to an exotic topologically protected one-way transmission along adjacent boundary. A cosine-shape isolated band, which supports the topological Bloch oscillation in the frequency dimension under the effective constant force, appears and is localized at the spatial boundary being robust against small perturbations. This work paves the way to improved light transmission capabilities under topological protections in both spatial and spectral regimes and provides a novel platform based on a technologically feasible lithium niobate platform for optical computing and communication.

    more » « less
  2. Photonic gauge potentials are crucial for manipulating charge-neutral photons like their counterpart electrons in the electromagnetic field, allowing the analogous Aharonov–Bohm effect in photonics and paving the way for critical applications such as photonic isolation. Normally, a gauge potential exhibits phase inversion along two opposite propagation paths. Here we experimentally demonstrate phonon-induced anomalous gauge potentials with noninverted gauge phases in a spatial-frequency space, where near-phase-matched nonlinear Brillouin scatterings enable such unique direction-dependent gauge phases. Based on this scheme, we construct photonic isolators in the frequency domain permitting nonreciprocal propagation of light along the frequency axis, where coherent phase control in the photonic isolator allows switching completely the directionality through an Aharonov–Bohm interferometer. Moreover, similar coherent controlled unidirectional frequency conversions are also illustrated. These results may offer a unique platform for a compact, integrated solution to implement synthetic-dimension devices for on-chip optical signal processing.

    more » « less
  3. The recent emerging field of synthetic dimension in photonics offers a variety of opportunities for manipulating different internal degrees of freedom of photons such as the spectrum of light. While nonlinear optical effects can be incorporated into these photonic systems with synthetic dimensions, these nonlinear effects typically result in long-range interactions along the frequency axis. Thus, it has been difficult to use the synthetic dimension concept to study a large class of Hamiltonians that involves local interactions. Here we show that a Hamiltonian that is locally interacting along the synthetic dimension can be achieved in a dynamically modulated ring resonator incorporatingχ(3)nonlinearity, provided that the group velocity dispersion of the waveguide forming the ring is specifically designed. As a demonstration we numerically implement a Bose–Hubbard model and explore photon blockade effect in the synthetic frequency space. Our work opens new possibilities for studying fundamental many-body physics in the synthetic space in photonics, with potential applications in optical quantum communication and quantum computation.

    more » « less
  4. Abstract

    Efficient manipulation of quantum states is a key step towards applications in quantum information, quantum metrology, and nonlinear optics. Recently, atomic arrays have been shown to be a promising system for exploring topological quantum optics and robust control of quantum states, where the inherent nonlinearity is included through long-range hoppings. Here we show that a one-dimensional atomic array in a periodic magnetic field exhibits characteristic properties associated with an effective two-dimensional Hofstadter-butterfly-like model. Our work points out super- and sub-radiant topological edge states localized at the boundaries of the atomic array despite featuring long-range interactions, and opens an avenue of exploring an interacting quantum optical platform with synthetic dimensions.

    more » « less
  5. Abstract

    Flexible pressure sensors are an essential part of robotic skin for human–machine interfaces, wearables, and implantable biomedical devices. However, the desirable characteristics of high sensitivity, conformability, and good scalability are often mutually exclusive. Here, a highly sensitive and flexible pressure sensor that can be easily fabricated by coating a carbon flower and elastomer composite is presented. The composite made from uniform‐sized carbon flower particles exhibits a contact‐based mechanism for pressure sensing, as opposed to typical carbon black pressure sensitive composites which utilize percolation as the sensing mechanism. The contact mechanism allows for an active layer down to 13 µm, and a bending insensitivity down to a 5.5 mm bending radius, while maintaining a high sensitivity. Furthermore, the composite is printed over a large 1 m × 2 cm pressure sensing area, showing the preparation of this sensor can be scaled to large area.

    more » « less