skip to main content

Search for: All records

Creators/Authors contains: "Chen, Xiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In high-temperature ( T c ) cuprate superconductors, many exotic phenomena are rooted in the enigmatic pseudogap state, which has been interpreted as consisting of preformed Cooper pairs or competing orders or a combination thereof. Observation of pseudogap phenomenologically in electron-doped Sr 2 IrO 4 —the 5d electron counterpart of the cuprates, has spurred intense interest in the strontium iridates as a testbed for exploring the exotic physics of the cuprates. Here, we examine the pseudogap state of electron-doped Sr 2 IrO 4 by angle-resolved photoemission spectroscopy (ARPES) and parallel theoretical modeling. Our analysis demonstrates that the pseudogap state of Sr 2 IrO 4 appears without breaking the particle–hole symmetry or inducing spectral broadening which are telltale signatures of competing orders in the cuprates. We find quasiparticle dispersion and its temperature dependence in the pseudogap state of Sr 2 IrO 4 to point to an electronic order with a zero scattering wave vector and limited correlation length. Particle–hole symmetric preformed Cooper pairs are discussed as a viable mechanism for such an electronic order. The potential roles of incommensurate density waves are also discussed.
    Free, publicly-accessible full text available December 1, 2023
  2. Free, publicly-accessible full text available May 23, 2023
  3. Free, publicly-accessible full text available May 16, 2023
  4. Free, publicly-accessible full text available February 1, 2023
  5. Free, publicly-accessible full text available May 1, 2023
  6. Correlated oxides can exhibit complex magnetic patterns. Understanding how magnetic domains form in the presence of disorder and their robustness to temperature variations has been of particular interest, but atomic scale insight has been limited. We use spin-polarized scanning tunneling microscopy to image the evolution of spin-resolved modulations originating from antiferromagnetic (AF) ordering in a spin-orbit Mott insulator perovskite iridate Sr 3 Ir 2 O 7 as a function of chemical composition and temperature. We find that replacing only several percent of lanthanum for strontium leaves behind nanometer-scale AF puddles clustering away from lanthanum substitutions preferentially located in the middle strontium oxide layer. Thermal erasure and reentry into the low-temperature ground state leads to a spatial reorganization of the AF puddles, which nevertheless maintain scale-invariant fractal geometry in each configuration. Our experiments reveal multiple stable AF configurations at low temperature and shed light onto spatial fluctuations of the AF order around atomic scale disorder in electron-doped Sr 3 Ir 2 O 7 .
  7. The AA′-stacked FCGT is a new class of room-temperature Néel-type skyrmion hosting material with C 6v symmetry.
    Free, publicly-accessible full text available March 25, 2023
  8. Free, publicly-accessible full text available April 1, 2023