skip to main content

Search for: All records

Creators/Authors contains: "Chen, Xiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The dynamic interaction between phonons and dislocations in LiF has been studied using molecular dynamics simulations. The simulations have captured the strong dynamic interactions between low-frequency slow transverse acoustic phonons and dislocations that were observed in experiments. Simulation results reveal that the strong dynamic interaction is attributed to resonant interactions between dislocations and slow transverse acoustic phonons. Each dislocation segment is found to possess a set of resonant modes characterized by large-amplitude out-of-phase vibrations of atoms on both sides of the dislocation slip plane. The resonant frequencies associated with these modes exhibit a nearly linear distribution with respect to the mode order. Contrary to previous beliefs, the resonant frequencies of dislocations exhibit only a weak correlation with the dislocation length. Additionally, each dislocation exhibits a dominant resonant mode that corresponds to the strongest vibration mode in response to phonons. This dominant resonant mode is not always the first resonant mode with the lowest frequency. Its specific order depends on the dislocation length. Simulation results have also demonstrated that the resonant modes of dislocations can be influenced by the interactions from neighboring dislocations. 
    more » « less
    Free, publicly-accessible full text available November 21, 2024
  2. Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available August 4, 2024
  4. Abstract

    Mitosis is a critical criterion for meningioma grading. However, pathologists’ assessment of mitoses is subject to significant inter-observer variation due to challenges in locating mitosis hotspots and accurately detecting mitotic figures. To address this issue, we leverage digital pathology and propose a computational strategy to enhance pathologists’ mitosis assessment. The strategy has two components: (1) A depth-first search algorithm that quantifies the mathematically maximum mitotic count in 10 consecutive high-power fields, which can enhance the preciseness, especially in cases with borderline mitotic count. (2) Implementing a collaborative sphere to group a set of pathologists to detect mitoses under each high-power field, which can mitigate subjective random errors in mitosis detection originating from individual detection errors. By depth-first search algorithm (1) , we analyzed 19 meningioma slides and discovered that the proposed algorithm upgraded two borderline cases verified at consensus conferences. This improvement is attributed to the algorithm’s ability to quantify the mitotic count more comprehensively compared to other conventional methods of counting mitoses. In implementing a collaborative sphere (2) , we evaluated the correctness of mitosis detection from grouped pathologists and/or pathology residents, where each member of the group annotated a set of 48 high-power field images for mitotic figures independently. We report that groups with sizes of three can achieve an average precision of 0.897 and sensitivity of 0.699 in mitosis detection, which is higher than an average pathologist in this study (precision: 0.750, sensitivity: 0.667). The proposed computational strategy can be integrated with artificial intelligence workflow, which envisions the future of achieving a rapid and robust mitosis assessment by interactive assisting algorithms that can ultimately benefit patient management.

    more » « less
  5. In this paper, we present concurrent atomistic-continuum (CAC) simulations of the hydrogen (H) diffusion along a grain boundary (GB), nearby which a large population of dislocations are piled up, in a plastically deformed bi-crystalline bcc iron sample. With the microscale dislocation slip and the atomic structure evolution at the GB being simultaneously retained, our main findings are: (i) the accumulation of tens of dislocations near the H-charged GB can induce a local internal stress as high as 3 GPa; (ii) the more dislocations piled up at the GB, the slower the H diffusion ahead of the slip–GB intersection; and (iii) H atoms diffuse fast behind the pileup tip, get trapped within the GB, and diffuse slowly ahead of the pileup tip. The CAC simulation-predicted local H diffusivity, Dpileup−tip, and local stresses, σ, are correlated with each other. We then consolidate such correlations into a mechanics model by considering the dislocation pileup as an Eshelby inclusion. These findings will provide researchers with opportunities to: (a) characterize the interplay between plasticity, H diffusion, and crack initiation underlying H-induced cracking (HIC); (b) develop mechanism-based constitutive rules to be used in diffusion–plasticity coupling models for understanding the interplay between mechanical and mass transport in materials at the continuum level; and (c) connect the atomistic deformation physics of polycrystalline materials with their performance in aqueous environments, which is currently difficult to achieve in experiments.

    more » « less
    Free, publicly-accessible full text available August 1, 2024
  6. Due to the often limited communication bandwidth of edge devices, most existing federated learning (FL) methods randomly select only a subset of devices to participate in training at each communication round. Compared with engaging all the available clients, such a random-selection mechanism could lead to significant performance degradation on non-IID (independent and identically distributed) data. In this paper, we present our key observation that the essential reason resulting in such performance degradation is the class-imbalance of the grouped data from randomly selected clients. Based on this observation, we design an efficient heterogeneity-aware client sampling mechanism, namely, Federated Class-balanced Sampling (Fed-CBS), which can effectively reduce class-imbalance of the grouped dataset from the intentionally selected clients. We first propose a measure of class-imbalance which can be derived in a privacy-preserving way. Based on this measure, we design a computationefficient client sampling strategy such that the actively selected clients will generate a more classbalanced grouped dataset with theoretical guarantees. Experimental results show that Fed-CBS outperforms the status quo approaches in terms of test accuracy and the rate of convergence while achieving comparable or even better performance than the ideal setting where all the available clients participate in the FL training. 
    more » « less
    Free, publicly-accessible full text available July 23, 2024
  7. Electron-hole bound pairs, or excitons, are common excitations in semiconductors. They can spontaneously form and condense into a new insulating ground state—the so-called excitonic insulator—when the energy of electron-hole Coulomb attraction exceeds the band gap. In the presence of electron-phonon coupling, a periodic lattice distortion often concomitantly occurs. However, a similar structural transition can also be induced by electron-phonon coupling itself, therefore hindering the clean identification of bulk excitonic insulators (e.g., which instability is the driving force of the phase transition). Using high-resolution synchrotron x-ray diffraction and angle-resolved photoemission spectroscopy, we identify key electron-phonon coupling effects in a leading excitonic insulator candidate Ta 2 NiSe 5 . These include an extensive unidirectional lattice fluctuation and an electronic pseudogap in the normal state, as well as a negative electronic compressibility in the charge-doped broken-symmetry state. In combination with first principles and model calculations, we use the normal state electronic spectra to quantitatively determine the electron-phonon interaction vertex g and interband Coulomb interaction V in the minimal lattice model, the solution to which captures the experimental observations. Moreover, we show how the Coulomb and electron-phonon coupling effects can be unambiguously separated based on the solution to quantified microscopic models. Finally, we discuss how the strong lattice fluctuations enabled by low dimensionality relate to the unique electron-phonon interaction effects beyond the textbook Born-Oppenheimer approximation. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024