skip to main content

Search for: All records

Creators/Authors contains: "Chen, Yimin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Indoor navigation systems are very useful in large complex indoor environments such as shopping malls. Current systems focus on improving indoor localization accuracy and must be combined with an accurate labeled floor plan to provide usable indoor navigation services. Such labeled floor plans are often unavailable or involve a prohibitive cost to manually obtain. In this paper, we present IndoorWaze, a novel crowdsourcing-based context-aware indoor navigation system that can automatically generate an accurate context-aware floor plan with labeled indoor POIs for the first time in literature. IndoorWaze combines the Wi-Fi fingerprints of indoor walkers with the Wi-Fi fingerprints and POI labels provided by POI employees to produce a high-fidelity labeled floor plan. As a lightweight crowdsourcing-based system, IndoorWaze involves very little effort from indoor walkers and POI employees. We prototype IndoorWaze on Android smartphones and evaluate it in a large shopping mall. Our results show that IndoorWaze can generate a high-fidelity labeled floor plan, in which all the stores are correctly labeled and arranged, all the pathways and crossings are correctly shown, and the median estimation error for the store dimension is below 12%.
  2. Mobile two-factor authentication (2FA) has become commonplace along with the popularity of mobile devices. Current mobile 2FA solutions all require some form of user effort which may seriously affect the experience of mobile users, especially senior citizens or those with disability such as visually impaired users. In this paper, we propose Proximity-Proof, a secure and usable mobile 2FA system without involving user interactions. Proximity-Proof automatically transmits a user's 2FA response via inaudible OFDM-modulated acoustic signals to the login browser. We propose a novel technique to extract individual speaker and microphone fingerprints of a mobile device to defend against the powerful man-in-the-middle (MiM) attack. In addition, Proximity-Proof explores two-way acoustic ranging to thwart the co-located attack. To the best of our knowledge, Proximity-Proof is the first mobile 2FA scheme resilient to the MiM and co-located attacks. We empirically analyze that Proximity-Proof is at least as secure as existing mobile 2FA solutions while being highly usable. We also prototype Proximity-Proof and confirm its high security, usability, and efficiency through comprehensive user experiments.