skip to main content

Search for: All records

Creators/Authors contains: "Chen, Yize"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2023
  2. Fast and safe voltage regulation algorithms can serve as fundamental schemes for achieving a high level of renewable penetration in modern distribution power grids. Faced with uncertain or even unknown distribution grid models and fast changing power injections, model-free deep reinforcement learning (DRL) algorithms have been proposed to find the reactive power injections for inverters while optimizing the voltage profiles. However, such data-driven controllers can not guarantee the satisfaction of the hard operational constraints, such as maintaining voltage profiles within a certain range of the nominal value. To this end, we propose SAVER: SAfe Voltage Regulator, which is composed of an RL learner and a specifically designed, computationally efficient safety projection layer. SAVER provides a plug-and-play interface for a set of DRL algorithms that guarantees the system voltages are within safe bounds. Numerical simulations on real-world data validate the performance of the proposed algorithm. 
    more » « less
  3. null (Ed.)