Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Background Cotton fibers provide a powerful model for studying cell differentiation and elongation. Each cotton fiber is a singular and elongated cell derived from epidermal-layer cells of a cotton seed. Efforts to understand this dramatic developmental shift have been impeded by the difficulty of separation between fiber and epidermal cells. Results Here we employed laser-capture microdissection (LCM) to separate these cell types. RNA-seq analysis revealed transitional differences between fiber and epidermal-layer cells at 0 or 2 days post anthesis. Specifically, down-regulation of putative cell cycle genes was coupled with upregulation of ribosome biosynthesis and translation-related genes, which may suggest theirmore »Free, publicly-accessible full text available December 1, 2022
-
Dielectric elastomers (DEs) deform and change shape when an electric field is applied across them. They are flexible, resilient, lightweight, and durable and as such are suitable for use as soft actuators. In this paper a physics-based and control-oriented model is developed for a DE tubular actuator using a physics-lumped parameter modeling approach. The model derives from the nonlinear partial differential equations (PDE) which govern the nonlinear elasticity of the DE actuator and the ordinary differential equation (ODE) that governs the electrical dynamics of the DE actuator. With the boundary conditions for the tubular actuator, the nonlinear PDEs are numericallymore »Free, publicly-accessible full text available October 26, 2022
-
Focusing on graph-structured prediction tasks, we demon- strate the ability of neural networks to provide both strong predictive performance and easy interpretability, two proper- ties often at odds in modern deep architectures. We formulate the latter by the ability to extract the relevant substructures for a given task, inspired by biology and chemistry appli- cations. To do so, we utilize the Local Relational Pooling (LRP) model, which is recently introduced with motivations from substructure counting. In this work, we demonstrate that LRP models can be used on challenging graph classification tasks to provide both state-of-the-art performance and inter- pretability, throughmore »Free, publicly-accessible full text available July 1, 2022
-
This study examined age differences in barriers to preparing for disasters and how caregiving responsibilities are associated with these barriers among different age groups. Using a sample of 1142 individuals from the 2017 Federal Emergency Management Agency National Household Survey, binary and multinomial logistic regressions were conducted to investigate the likelihood of encountering any or one of the two types of barriers, namely, barriers related to coping appraisal (i.e., capacity) and those related to threat appraisal (i.e., risk perception). Age was the key predictor and was categorized into five groups: 18–34, 35–49, 50–64, 65–74, and 75+. The results showed thatmore »Free, publicly-accessible full text available July 1, 2022
-
From the perspective of expressive power, this work compares multi-layer Graph Neural Networks (GNNs) with a simplified alternative that we call Graph-Augmented Multi-Layer Perceptrons (GA-MLPs), which first augments node features with certain multi-hop operators on the graph and then applies an MLP in a node-wise fashion. From the perspective of graph isomorphism testing, we show both theoretically and numerically that GA-MLPs with suitable operators can distinguish almost all non-isomorphic graphs, just like the Weifeiler-Lehman (WL) test. However, by viewing them as node-level functions and examining the equivalence classes they induce on rooted graphs, we prove a separation in expressive powermore »
-
Polyploidy is a prominent feature for genome evolution in many animals and all flowering plants. Plant polyploids often show enhanced fitness in diverse and extreme environments, but the molecular basis for this remains elusive. Soil salinity presents challenges for many plants including agricultural crops. Here we report that salt tolerance is enhanced in tetraploid rice through lower sodium uptake and correlates with epigenetic regulation of jasmonic acid (JA)–related genes. Polyploidy induces DNA hypomethylation and potentiates genomic loci coexistent with many stress-responsive genes, which are generally associated with proximal transposable elements (TEs). Under salt stress, the stress-responsive genes including those inmore »