skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chen, Zhili"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Guruswami, Venkatesan (Ed.)
    We study the complexity of isomorphism problems for d-way arrays, or tensors, under natural actions by classical groups such as orthogonal, unitary, and symplectic groups. These problems arise naturally in statistical data analysis and quantum information. We study two types of complexity-theoretic questions. First, for a fixed action type (isomorphism, conjugacy, etc.), we relate the complexity of the isomorphism problem over a classical group to that over the general linear group. Second, for a fixed group type (orthogonal, unitary, or symplectic), we compare the complexity of the isomorphism problems for different actions. Our main results are as follows. First, for orthogonal and symplectic groups acting on 3-way arrays, the isomorphism problems reduce to the corresponding problems over the general linear group. Second, for orthogonal and unitary groups, the isomorphism problems of five natural actions on 3-way arrays are polynomial-time equivalent, and the d-tensor isomorphism problem reduces to the 3-tensor isomorphism problem for any fixed d >= 3. For unitary groups, the preceding result implies that LOCC classification of tripartite quantum states is at least as difficult as LOCC classification of d-partite quantum states for any d. Lastly, we also show that the graph isomorphism problem reduces to the tensor isomorphism problem over orthogonal and unitary groups. 
    more » « less