skip to main content

Search for: All records

Creators/Authors contains: "Cheng, Chung���Fu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Molecules based on benzimidazolone‐dioxazine are known as blue/violet pigments and have been commercialized for decades. However, unfavorable solubility limits the application of these structures as building blocks of conjugated polymers despite their low band gaps. Herein, a series of donor–acceptor conjugated polymers containing soluble benzimidazolone‐dioxazine structures as the acceptors and oligothiophene as donors are synthesized and investigated. With increasing numbers of thiophene rings, the steric hindrance diminishes and high molecular weight polymers can be achieved, leading to an improved performance in organic field effect transistor devices. The hole mobility of polymers with three to six thiophene units is in the order of 10−1cm2V−1s−1. Among all the polymers, polymer P3 with three thiophene units between benzimidazolone‐dioxazine structures shows the best hole mobility of 0.4 cm2V−1s−1. Grazing‐incidence wide‐angle X‐ray scattering results reveal that the high mobility of organic field‐effect transistors (OFETs) can be accredited by matched donor–acceptor packing in the solid thin films.

  2. A nanoporous Ni/NiO/C nanocomposite with a gyroid nanostructure was fabricated by using a nanoporous polymer with gyroid nanochannels as a template. The polymer template was obtained from the self-assembly of a degradable block copolymer, polystyrene- b -poly( l -lactide) (PS-PLLA), followed by the hydrolysis of PLLA blocks. Templated electroless plating followed by calcination was performed to create a precisely controlled Ni/NiO gyroid nanostructure. After carbon coating, a well-interconnected nanoporous gyroid Ni/NiO/C nanocomposite can be successfully fabricated. Benefiting from the well-interconnected nanoporous structure with ultrafine transition metal oxide and uniform carbon coating, the gyroid nanoporous Ni/NiO/C nanocomposite electrodes exhibited high specific capacities at various rates (1240 mA h g −1 at 0.2 A g −1 , 902 mA h g −1 at 2 A g −1 and 424 mA h g −1 at 10 A g −1 ) and excellent cyclability (809 mA h g −1 at 1 A g −1 after 1000 cycles, average coulombic efficiency 99.86%). This research demonstrates a universal approach for constructing a nanostructured electrode with explicitly controlled block copolymer phase separation.