skip to main content

Search for: All records

Creators/Authors contains: "Cheng, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Laser Induced Deep Etching (LIDE®), developed by LPKF, is a maskless laser processing method capable of patterning glass microstructures similar to microfluidics created by PDMS soft lithography. Here, we demonstrate a self-digitized droplet microfluidics chip with high aspect-ratio features and fine resolution via the LIDE® technology. LIDE® provides the means to translate microfluidic designs into glass in a process suitable for low-cost and high-volume manufacturing.
    Free, publicly-accessible full text available December 1, 2023
  2. Free, publicly-accessible full text available October 17, 2023
  3. Free, publicly-accessible full text available July 1, 2023
  4. Free, publicly-accessible full text available June 27, 2023
  5. Local differential privacy (LDP) can be adopted to anonymize richer user data attributes that will be input to sophisticated machine learning (ML) tasks. However, today’s LDP approaches are largely task-agnostic and often lead to severe performance loss – they simply inject noise to all data attributes according to a given privacy budget, regardless of what features are most relevant for the ultimate task. In this paper, we address how to significantly improve the ultimate task performance with multi-dimensional user data by considering a task-aware privacy preservation problem. The key idea is to use an encoder-decoder framework to learn (and anonymize) a task-relevant latent representation of user data. We obtain an analytical near-optimal solution for the linear setting with mean-squared error (MSE) task loss. We also provide an approximate solution through a gradient-based learning algorithm for general nonlinear cases. Extensive experiments demonstrate that our task-aware approach significantly improves ultimate task accuracy compared to standard benchmark LDP approaches with the same level of privacy guarantee.