skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Shelley_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Eruptive mass loss in massive stars is known to occur, but the mechanism(s) are not yet well understood. One proposed physical explanation appeals to opacity-driven super-Eddington luminosities in stellar envelopes. Here, we present a 1D model for eruptive mass loss and implement this model in theMESAstellar evolution code. The model identifies regions in the star where the energy associated with a local super-Eddington luminosity exceeds the binding energy of the overlaying envelope. The material above such regions is ejected from the star. Stars with initial masses of 10−100Mat solar and SMC metallicities are evolved through core helium burning, with and without this new eruptive mass-loss scheme. We find that eruptive mass loss of up to ∼10−2Myr−1can be driven by this mechanism, and occurs in a vertical band on the H-R diagram between 3.5 log ( T eff / K ) 4.0 . This predicted eruptive mass loss prevents stars of initial masses ≳20Mfrom evolving to become red supergiants (RSGs), with the stars instead ending their lives as blue supergiants, and offers a possible explanation for the observed lack of RSGs in that mass regime. 
    more » « less