Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 4, 2024
-
Free, publicly-accessible full text available June 1, 2024
-
Free, publicly-accessible full text available January 1, 2024
-
Free, publicly-accessible full text available November 1, 2023
-
Free, publicly-accessible full text available October 1, 2023
-
Abstract A better understanding of various patterns in the coronavirus disease 2019 (COVID-19) spread in different parts of the world is crucial to its prevention and control. Motivated by the previously developed Global Epidemic and Mobility (GLEaM) model, this paper proposes a new stochastic dynamic model to depict the evolution of COVID-19. The model allows spatial and temporal heterogeneity of transmission parameters and involves transportation between regions. Based on the proposed model, this paper also designs a two-step procedure for parameter inference, which utilizes the correlation between regions through a prior distribution that imposes graph Laplacian regularization on transmission parameters. Experiments on simulated data and real-world data in China and Europe indicate that the proposed model achieves higher accuracy in predicting the newly confirmed cases than baseline models.
-
Encoding the scale information explicitly into the representation learned by a convolutional neural network (CNN) is beneficial for many computer vision tasks especially when dealing with multiscale inputs. We study, in this paper, a scaling-translation-equivariant (ST-equivariant) CNN with joint convolutions across the space and the scaling group, which is shown to be both sufficient and necessary to achieve equivariance for the regular representation of the scaling-translation group ST. To reduce the model complexity and computational burden, we decompose the convolutional filters under two pre-fixed separable bases and truncate the expansion to low-frequency components. A further benefit of the truncated filter expansion is the improved deformation robustness of the equivariant representation, a property which is theoretically analyzed and empirically verified. Numerical experiments demonstrate that the proposed scaling-translation-equivariant network with decomposed convolutional filters (ScDCFNet) achieves significantly improved performance in multiscale image classification and better interpretability than regular CNNs at a reduced model size.
-
Encoding the scale information explicitly into the representation learned by a convolutional neural network (CNN) is beneficial for many computer vision tasks especially when dealing with multiscale inputs. We study, in this paper, a scaling-translation-equivariant (ST-equivariant) CNN with joint convolutions across the space and the scaling group, which is shown to be both sufficient and necessary to achieve equivariance for the regular representation of the scaling-translation group ST. To reduce the model complexity and computational burden, we decompose the convolutional filters under two pre-fixed separable bases and truncate the expansion to low-frequency components. A further benefit of the truncated filter expansion is the improved deformation robustness of the equivariant representation, a property which is theoretically analyzed and empirically verified. Numerical experiments demonstrate that the proposed scaling-translation-equivariant network with decomposed convolutional filters (ScDCFNet) achieves significantly improved performance in multiscale image classification and better interpretability than regular CNNs at a reduced model size.