Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ciofani, G (Ed.)We examine the collective behavior of single cells in microbial systems to provide insights into the origin of the biological clock. Microfluidics has opened a window onto how single cells can synchronize their behavior. Four hypotheses are proposed to explain the origin of the clock from the synchronized behavior of single cells. These hypotheses depend on the presence or absence of a communication mechanism between the clocks in single cells and the presence or absence of a stochastic component in the clock mechanism. To test these models, we integrate physical models for the behavior of the clocks in single cells or filaments with new approaches to measuring clocks in single cells. As an example, we provide evidence for a quorum-sensing signal both with microfluidics experiments on single cells and with continuousin vivometabolism NMR (CIVM-NMR). We also provide evidence for the stochastic component in clocks of single cells. Throughout this study, ensemble methods from statistical physics are used to characterize the clock at both the single-cell level and the macroscopic scale of 106cells.more » « lessFree, publicly-accessible full text available January 14, 2027
-
Abstract The presence of Arbuscular Mycorrhizal Fungi (AMF) in vascular land plant roots is one of the most ancient of symbioses supporting nitrogen and phosphorus exchange for photosynthetically derived carbon. Here we provide a multi-scale modeling approach to predict AMF colonization of a worldwide crop from a Recombinant Inbred Line (RIL) population derived fromSorghum bicolorandS. propinquum. The high-throughput phenotyping methods of fungal structures here rely on a Mask Region-based Convolutional Neural Network (Mask R-CNN) in computer vision for pixel-wise fungal structure segmentations and mixed linear models to explore the relations of AMF colonization, root niche, and fungal structure allocation. Models proposed capture over 95% of the variation in AMF colonization as a function of root niche and relative abundance of fungal structures in each plant. Arbuscule allocation is a significant predictor of AMF colonization among sibling plants. Arbuscules and extraradical hyphae implicated in nutrient exchange predict highest AMF colonization in the top root section. Our work demonstrates that deep learning can be used by the community for the high-throughput phenotyping of AMF in plant roots. Mixed linear modeling provides a framework for testing hypotheses about AMF colonization phenotypes as a function of root niche and fungal structure allocations.more » « less
-
Abstract We determined the macroscopic limit for phase synchronization of cellular clocks in an artificial tissue created by a “big chamber” microfluidic device to be about 150,000 cells or less. The dimensions of the microfluidic chamber allowed us to calculate an upper limit on the radius of a hypothesized quorum sensing signal molecule of 13.05 nm using a diffusion approximation for signal travel within the device. The use of a second microwell microfluidic device allowed the refinement of the macroscopic limit to a cell density of 2166 cells per fixed area of the device for phase synchronization. The measurement of averages over single cell trajectories in the microwell device supported a deterministic quorum sensing model identified by ensemble methods for clock phase synchronization. A strong inference framework was used to test the communication mechanism in phase synchronization of quorum sensing versus cell-to-cell contact, suggesting support for quorum sensing. Further evidence came from showing phase synchronization was density-dependent.more » « less
An official website of the United States government
