skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chernyak, Vladimir Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 8, 2026
  2. We study entanglement created between two isolated qubits by interaction with entangled-photon pairs obtained by parametric down-conversion of a laser pump field. The induced entanglement is quantified using the mixed state Concurrence proposed by Wootters et al. [Phys. Rev. Lett. 78, 5022 (1997)]. A universal value of qubit-entanglement, which is independent on the photon-pair wavefunction is identified to leading order in the qubit–field interaction and the pump field amplitude. The qubit entanglement decreases at higher laser pump intensities due to interference between the entangled photon pairs, which creates excitations in the qubit system. Maximal Concurrence is produced by only generating coherences between the ground and the highest excited qubit states. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  3. Molecular chirality has long been monitored in the frequency domain in the ultraviolet, visible, and infrared regimes. Recently developed time-domain approaches can detect time-dependent chiral dynamics by enhancing intrinsically weak chiral signals. Even-order nonlinear signals in chiral molecules have gained attention thanks to their existence in the electric dipole approximation, without relying on the weaker higher-order multipole interactions. We illustrate the optimization of temporal polarization pulse-shaping in various frequency ranges (infrared/optical and optical/X ray) to enhance chiral nonlinear signals. These signals can be recast as an overlap integral of matter and field pseudoscalars which contain the relevant chiral information. Simulations are carried out for second- and fourth-order nonlinear spectroscopies in L-tryptophan. 
    more » « less
  4. Free, publicly-accessible full text available July 24, 2025
  5. We propose a time–frequency resolved spectroscopic technique which employs nonlinear interferometers to study exciton–exciton scattering in molecular aggregates. A higher degree of control over the contributing Liouville pathways is obtained as compared to classical light. We show how the nonlinear response can be isolated from the orders-of-magnitude stronger linear background by either phase matching or polarization filtering. Both arise due to averaging the signal over a large number of noninteracting, randomly oriented molecules. We apply our technique to the Frenkel exciton model which excludes charge separation for the photosystem II reaction center. We show how the sum of the entangled photon frequencies can be used to select two-exciton resonances, while their delay times reveal the single-exciton levels involved in the optical process. 
    more » « less
  6. Consolidation of ultrafast optics in electron spectroscopies based on free electron energy exchange with matter has matured significantly over the past two decades, offering an attractive toolbox for the exploration of elementary events with unprecedented spatial and temporal resolution. Here, we propose a technique for monitoring electronic and nuclear molecular dynamics that is based on self-heterodyne coherent beating of a broadband pulse rather than incoherent population transport by a narrowband pulse. This exploits the strong exchange of coherence between the free electron and the sample. An optical pulse initiates matter dynamics, which is followed by inelastic scattering of a delayed high-energy broadband single-electron beam. The interacting and noninteracting beams then interfere to produce a heterodyne-detected signal, which reveals snapshots of the sample charge density by scanning a variable delay T . The spectral interference of the electron probe introduces high-contrast phase information, which makes it possible to record the electronic coherence in the sample. Quantum dynamical simulations of the ultrafast nonradiative conical intersection passage in uracil reveal a strong electronic beating signal imprinted onto the zero-loss peak of the electronic probe in a background-free manner. 
    more » « less