skip to main content

Search for: All records

Creators/Authors contains: "Cheshire, J. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For the past decade, the BICEP/Keck collaboration has been operating a series of telescopes at the Amundsen-Scott South Pole Station measuring degree-scale B-mode polarization imprinted in the Cosmic Microwave Background (CMB) by primordial gravitational waves (PGWs). These telescopes are compact refracting polarimeters mapping about 2% of the sky, observing at a broad range of frequencies to account for the polarized foreground from Galactic synchrotron and thermal dust emission. Our latest publication "BK18" utilizes the data collected up to the 2018 observing season, in conjunction with the publicly available WMAP and Planck data, to constrain the tensor-to-scalar ratio r. It particularlymore »includes (1) the 3-year BICEP3 data which is the current deepest CMB polarization map at the foreground-minimum 95 GHz; and (2) the Keck 220 GHz map with a higher signal-to-noise ratio on the dust foreground than the Planck 353 GHz map. We fit the auto- and cross-spectra of these maps to a multicomponent likelihood model (ΛCDM+dust+synchrotron+noise+r) and find it to be an adequate description of the data at the current noise level. The likelihood analysis yields σ(r)=0.009. The inference of r from our baseline model is tightened to r0.05=0.014+0.010−0.011 and r0.05<0.036 at 95% confidence, meaning that the BICEP/Keck B-mode data is the most powerful existing dataset for the constraint of PGWs. The up-coming BICEP Array telescope is projected to reach σ(r)≲0.003 using data up to 2027.« less
    Free, publicly-accessible full text available March 1, 2023
  2. Free, publicly-accessible full text available January 1, 2023
  3. Free, publicly-accessible full text available October 1, 2022
  4. BICEP Keck Collaboration; SPTpol Collaboration;
  5. null (Ed.)