skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheshire, Jack H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Abstract Lake Erie, USA–Canada, plays an important ecological and socioeconomic role but has suffered from chronic eutrophication. In particular, western Lake Erie (WLE) is the site of harmful algal blooms (HABs) which are suspected of being driven by excessive nutrient (phosphorus (P) and nitrogen (N)) inputs. During 2022 and 2023, in situ nutrient dilution and addition bioassays were conducted at a WLE bloom‐impacted location to investigate whether a nutrient reduction regime would be effective in limiting phytoplankton growth during the June diatom‐dominated spring blooms and August cyanobacteria‐dominated summer blooms. The primary objectives of this experiment were to (1) Determine if a proposed 40% P‐alone reduction would effectively reduce phytoplankton growth and mitigate blooms and (2) assess whether reductions in both P and N are more effective in controlling phytoplankton biomass than exclusive reductions in either N or P. Samples were analyzed for nutrient concentrations and growth rate responses for specific algal groups, utilizing diagnostic (for major algal groups) photopigments. Results indicated that although both 20% and 40% dilutions led to lower phytoplankton biomass and growth rates, 40% reductions were more effective. Our results support the USA–Canada Great Lakes Water Quality Agreement recommendation of a 40% P reduction, but also indicate that a parallel reduction of N input by 40% would be most effective in controlling bloom magnitudes. Overall, our findings underscore the recommendation that a year‐round dual N and P 40% reduction is needed for long‐term control of eutrophication and algal blooms, including cyanobacteria and diatoms, in Lake Erie. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025