skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheung, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine learning technology has become ubiquitous, but, unfortunately, often exhibits bias. As a consequence, disparate stakeholders need to interact with and make informed decisions about using machine learning models in everyday systems. Visualization technology can support stakeholders in understanding and evaluating trade-offs between, for example, accuracy and fairness of models. This paper aims to empirically answer “Can visualization design choices affect a stakeholder's perception of model bias, trust in a model, and willingness to adopt a model?” Through a series of controlled, crowd-sourced experiments with more than 1,500 participants, we identify a set of strategies people follow in deciding which models to trust. Our results show that men and women prioritize fairness and performance differently and that visual design choices significantly affect that prioritization. For example, women trust fairer models more often than men do, participants value fairness more when it is explained using text than as a bar chart, and being explicitly told a model is biased has a bigger impact than showing past biased performance. We test the generalizability of our results by comparing the effect of multiple textual and visual design choices and offer potential explanations of the cognitive mechanisms behind the difference in fairness perception and trust. Our research guides design considerations to support future work developing visualization systems for machine learning. 
    more » « less
  2. Abstract Osteoarthritis is the third most rapidly growing health condition associated with disability, after dementia and diabetes1. By 2050, the total number of patients with osteoarthritis is estimated to reach 1 billion worldwide2. As no disease-modifying treatments exist for osteoarthritis, a better understanding of disease aetiopathology is urgently needed. Here we perform a genome-wide association study meta-analyses across up to 489,975 cases and 1,472,094 controls, establishing 962 independent associations, 513 of which have not been previously reported. Using single-cell multiomics data, we identify signal enrichment in embryonic skeletal development pathways. We integrate orthogonal lines of evidence, including transcriptome, proteome and epigenome profiles of primary joint tissues, and implicate 700 effector genes. Within these, we find rare coding-variant burden associations with effect sizes that are consistently higher than common frequency variant associations. We highlight eight biological processes in which we find convergent involvement of multiple effector genes, including the circadian clock, glial-cell-related processes and pathways with an established role in osteoarthritis (TGFβ, FGF, WNT, BMP and retinoic acid signalling, and extracellular matrix organization). We find that 10% of the effector genes express a protein that is the target of approved drugs, offering repurposing opportunities, which can accelerate translation. 
    more » « less
    Free, publicly-accessible full text available May 29, 2026