skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Cheung, Kwok Fai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Strong tsunami excitation from slow rupture of shallow subduction zone faults is recognized as a key concern for tsunami hazard assessment. Three months after the 22 July 2020 magnitude 7.8 thrust earthquake struck the plate boundary below the Shumagin Islands, Alaska, a magnitude 7.6 aftershock ruptured with complex intraplate faulting. Despite the smaller size and predominantly strike-slip faulting mechanism inferred from seismic waves for the aftershock, it generated much larger tsunami waves than the mainshock. Here we show through detailed analysis of seismic, geodetic, and tsunami observations of the aftershock that the event implicated unprecedented source complexity, involving weakly tsunamigenic fast rupture of two intraplate faults located below and most likely above the plate boundary, along with induced strongly tsunamigenic slow thrust slip on a third fault near the shelf break likely striking nearly perpendicular to the trench. The thrust slip took over 5 min, giving no clear expression in seismic or geodetic observations while producing the sizeable far-field tsunami. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    The Kalapana, Hawaii,MW7.7 earthquake on November 29, 1975 generated a local tsunami with at least 14.3 m runup on the southeast shore of Hawaii Island adjacent to Kilauea Volcano. This was the largest locally generated tsunami since the great 1868 Ka'u earthquake located along‐shore to the southwest. Well‐recorded tide gauge and runup observations provide a key benchmark for studies of statewide tsunami hazards from actively deforming southeast Hawaii Island. However, the source process of the earthquake remains controversial, with coastal landsliding and/or offshore normal or thrust faulting mechanisms having been proposed to reconcile features of seismic, geodetic, and tsunami observations. We utilize these diverse observations for the 1975 Kalapana earthquake to deduce a compound faulting model that accounts for the overall tsunamigenesis, involving both landslide block faulting along the shore and slip on the island basal décollement. Thrust slip of 4.5–8.0 m on the offshore décollement produces moderate near‐field runup but controls the far‐field tsunami. The slip distribution implies that residual strain energy was available for the May 4, 2018MW7.2 thrust earthquake during the Kilauea‐East Rift Zone eruption. Local faulting below land contributes to geodetic and seismic observations, but is non‐tsunamigenic and not considered. Slip of 4–10 m on landslide‐like faults, which extend from the Hilina Fault Zone scarp to offshore shallowly dipping faults reaching near the seafloor, triples the near‐field tsunami runup. This compound model clarifies the roles of the faulting components in assessing tsunami hazards for the Hawaiian Islands.

     
    more » « less
  6. Abstract

    The Shumagin seismic gap along the Alaska Peninsula experienced a major,MW7.8, interplate thrust earthquake on 22 July 2020. Several available finite‐fault inversions indicate patchy slip of up to 4 m at 8–48 km depth. There are differences among the models in peak slip and absolute placement of slip on the plate boundary, resulting from differences in data distributions, model parameterizations, and inversion algorithms. Two representative slip models obtained from inversions of large seismic and geodetic data sets produce very different tsunami predictions at tide gauges and deep‐water pressure sensors (DART stations), despite having only secondary differences in slip distribution. This is found to be the result of the acute sensitivity of the tsunami excitation for rupture below the continental shelf in proximity to an abrupt shelf break. Iteratively perturbing seismic and geodetic inversions by constraining fault model extent along dip and strike, we obtain an optimal rupture model compatible with teleseismicPandSHwaves, regional three‐component broadband and strong‐motion seismic recordings, hr‐GNSS time series and static offsets, as well as tsunami recordings at DART stations and regional and remote tide gauges. Slip is tightly bounded between 25 and 40 km depth, the up‐dip limit of slip in the earthquake is resolved to be well‐inland of the shelf break, and the rupture extent along strike is well‐constrained. The coseismic slip increased Coulomb stress on the shallow plate boundary extending to the trench, but the frictional behavior of the megathrust below the continental slope remains uncertain.

     
    more » « less
  7. Abstract

    A great earthquake struck the Semidi segment of the plate boundary along the Alaska Peninsula on 29 July 2021, re‐rupturing part of the 1938 rupture zone. The 2021MW8.2 Chignik earthquake occurred just northeast of the 22 July 2020MW7.8 Simeonof earthquake, with little slip overlap. Analysis of teleseismicPandSHwaves, regional Global Navigation Satellite System (GNSS) displacements, and near‐field and far‐field tsunami observations provides a good resolution of the 2021 rupture process. During ∼60‐s long faulting, the slip was nonuniformly distributed along the megathrust over depths from 32 to 40 km, with up to ∼12.9‐m slip in an ∼170‐km‐long patch. The 40–45 km down‐dip limit of slip is well constrained by GNSS observations along the Alaska Peninsula. Tsunami observations preclude significant slip from extending to depths <25 km, confining all coseismic slip to beneath the shallow continental shelf. Most aftershocks locate seaward of the large‐slip zones, with a concentration of activity up‐dip of the deeper southwestern slip zone. Some localized aftershock patches locate beneath the continental slope. The surface‐wave magnitudeMSof 8.1 for the 2021 earthquake is smaller thanMS = 8.3–8.4 for the 1938 event. Seismic and tsunami data indicate that slip in 1938 was concentrated in the eastern region of its aftershock zone, extending beyond the Semidi Islands, where the 2021 event did not rupture.

     
    more » « less