We present 294 pulsars found in GeV data from the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. Another 33 millisecond pulsars (MSPs) discovered in deep radio searches of LAT sources will likely reveal pulsations once phase-connected rotation ephemerides are achieved. A further dozen optical and/or X-ray binary systems colocated with LAT sources also likely harbor gamma-ray MSPs. This catalog thus reports roughly 340 gamma-ray pulsars and candidates, 10% of all known pulsars, compared to ≤11 known before Fermi. Half of the gamma-ray pulsars are young. Of these, the half that are undetected in radio have a broader Galactic latitude distribution than the young radio-loud pulsars. The others are MSPs, with six undetected in radio. Overall, ≥236 are bright enough above 50 MeV to fit the pulse profile, the energy spectrum, or both. For the common two-peaked profiles, the gamma-ray peak closest to the magnetic pole crossing generally has a softer spectrum. The spectral energy distributions tend to narrow as the spindown power
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract decreases to its observed minimum near 1033erg s−1, approaching the shape for synchrotron radiation from monoenergetic electrons. We calculate gamma-ray luminosities when distances are available. Our all-sky gamma-ray sensitivity map is useful for population syntheses. The electronic catalog version provides gamma-ray pulsar ephemerides, properties, and fit results to guide and be compared with modeling results. -
Widespread liquefaction occurred in the end-dumped gravelly fills and hydraulically-placed dredged sandy fill at the CentrePort of Wellington as a result of the 14 November 2016 Mw7.8 Kaikoura earthquake. This liquefaction resulted in substantial global (mass) settlement and lateral movement (spreading) of the fills towards the sea, which adversely affected wharf structures and buildings constructed on shallow and deep foundations. This paper presents key observations from the QuakeCoRE-GEER post-earthquake reconnaissance efforts at the CentrePort Wellington. The different materials and methods used to construct the reclaimed land at CentrePort influenced the patterns of observed liquefaction and its effects. Areas of gravel liquefaction at the port are especially important due to the limited number of these case histories in the literature. Liquefaction-induced ground deformations caused the wharves to displace laterally and damage their piles and offloading equipment. Lateral ground extension and differential settlement damaged buildings, whereas buildings in areas of uniform ground settlement without lateral extension performed significantly better.more » « less