skip to main content

Search for: All records

Creators/Authors contains: "Chinchali, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Local differential privacy (LDP) can be adopted to anonymize richer user data attributes that will be input to sophisticated machine learning (ML) tasks. However, today’s LDP approaches are largely task-agnostic and often lead to severe performance loss – they simply inject noise to all data attributes according to a given privacy budget, regardless of what features are most relevant for the ultimate task. In this paper, we address how to significantly improve the ultimate task performance with multi-dimensional user data by considering a task-aware privacy preservation problem. The key idea is to use an encoder-decoder framework to learn (and anonymize) a task-relevant latent representation of user data. We obtain an analytical near-optimal solution for the linear setting with mean-squared error (MSE) task loss. We also provide an approximate solution through a gradient-based learning algorithm for general nonlinear cases. Extensive experiments demonstrate that our task-aware approach significantly improves ultimate task accuracy compared to standard benchmark LDP approaches with the same level of privacy guarantee. 
    more » « less
  2. Sharing forecasts of network timeseries data, such as cellular or electricity load patterns, can improve independent control applications ranging from traffic scheduling to power generation. Typically, forecasts are designed without knowledge of a downstream controller's task objective, and thus simply optimize for mean prediction error. However, such task-agnostic representations are often too large to stream over a communication network and do not emphasize salient temporal features for cooperative control. This paper presents a solution to learn succinct, highly-compressed forecasts that are co-designed with a modular controller's task objective. Our simulations with real cellular, Internet-of-Things (IoT), and electricity load data show we can improve a model predictive controller's performance by at least 25% while transmitting 80% less data than the competing method. Further, we present theoretical compression results for a networked variant of the classical linear quadratic regulator (LQR) control problem. 
    more » « less