skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chiou, Jeng-Min"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    Multivariate functional data are increasingly encountered in data analysis, whereas statistical models for such data are not well developed yet. Motivated by a case-study where one aims to quantify the relationship between various longitudinally recorded behaviour intensities for Drosophila flies, we propose a functional linear manifold model. This model reflects the functional dependence between the components of multivariate random processes and is defined through data-determined linear combinations of the multivariate component trajectories, which are characterized by a set of varying-coefficient functions. The time varying linear relationships that govern the components of multivariate random functions yield insights about the underlying processes and also lead to noise-reduced representations of the multivariate component trajectories. The functional linear manifold model proposed is put to the task for an analysis of longitudinally observed behavioural patterns of flying, feeding, walking and resting over the lifespan of Drosophila flies and is also investigated in simulations.

     
    more » « less
  2. Summary

    We introduce a flexible marginal modelling approach for statistical inference for clustered and longitudinal data under minimal assumptions. This estimated estimating equations approach is semiparametric and the proposed models are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed effects linear predictor with unknown smooth link, and variance–covariance is an unknown smooth function of the marginal means. We propose to estimate the nonparametric link and variance–covariance functions via smoothing methods, whereas the regression parameters are obtained via the estimated estimating equations. These are score equations that contain nonparametric function estimates. The proposed estimated estimating equations approach is motivated by its flexibility and easy implementation. Moreover, if data follow a generalized linear mixed model, with either a specified or an unspecified distribution of random effects and link function, the model proposed emerges as the corresponding marginal (population-average) version and can be used to obtain inference for the fixed effects in the underlying generalized linear mixed model, without the need to specify any other components of this generalized linear mixed model. Among marginal models, the estimated estimating equations approach provides a flexible alternative to modelling with generalized estimating equations. Applications of estimated estimating equations include diagnostics and link selection. The asymptotic distribution of the proposed estimators for the model parameters is derived, enabling statistical inference. Practical illustrations include Poisson modelling of repeated epileptic seizure counts and simulations for clustered binomial responses.

     
    more » « less
  3. Summary

    We propose a class of semiparametric functional regression models to describe the influence of vector-valued covariates on a sample of response curves. Each observed curve is viewed as the realization of a random process, composed of an overall mean function and random components. The finite dimensional covariates influence the random components of the eigenfunction expansion through single-index models that include unknown smooth link and variance functions. The parametric components of the single-index models are estimated via quasi-score estimating equations with link and variance functions being estimated nonparametrically. We obtain several basic asymptotic results. The functional regression models proposed are illustrated with the analysis of a data set consisting of egg laying curves for 1000 female Mediterranean fruit-flies (medflies).

     
    more » « less