Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2023
-
Electrospun polyacrylonitrile (PAN) nanofibers integrated with different loadings of the photosensitizer rose bengal (RB) were synthesized for photodynamic inactivation of bacteria. Our results suggest that the ionic strength in the medium does not significantly affect the RB release from the RB-integrated electrospun PAN nanofibers (RBiEPNs), which could release RB effectively in phosphate-buffered saline (PBS), physiological saline (0.85% NaCl), and deionized H 2 O. However, the pH of the medium significantly influenced the release of RB. A larger amount of RB was released in PBS at a higher pH (RB release: pH 9.0 > pH 7.4 > pH 5.0). The RBiEPNs depicted high antimicrobial efficacy against both Gram-negative Escherichia coli ( E. coli ) and Gram-positive Bacillus subtilis ( B. subtilis ) bacteria under white light irradiation. The antimicrobial efficacy was potent and immediate against the bacterial cells, especially B. subtilis . The RBiEPNs containing 0.33 wt% RB demonstrated complete bacterial kills for B. subtilis and E. coli cells with log reductions of 5.76 and 5.94 in 30 s and 40 min, respectively. The generation of intracellular reactive oxygen species (iROS) was examined after white light treatment of the bacterial cells in the presence of the RBiEPNs. A significant correlation wasmore »
-
Herein, we report an effective strategy to maximize the antimicrobial activity of CuWO 4 /CuS hybrid composites, prepared by simply mixing CuWO 4 and CuS nanopowders with varying weight ratios in phosphate buffered saline solution by ultrasound. The tested bacteria included Gram negative (G − ) pathogenic bacteria Salmonella typhi , Gram positive (G + ) pathogenic bacteria Staphylococcus aureus , and G + bacteria Bacillus subtilis . The as-prepared composites exhibited much enhanced antibacterial efficiency compared with individual CuWO 4 and CuS nanopowders under white light irradiation. The checkerboard array analysis revealed that the combination of 8 μg mL −1 CuWO 4 and 2 μg mL −1 CuS was the most efficient and generated the optimal synergistic effect, showing a complete killing effect on all the tested bacteria from 3 strains with ∼5.8 log cell reduction. The significantly enhanced catalytic efficiency can be ascribed to the formation of a type-II heterojunction between CuWO 4 and CuS, which can effectively improve the charge separation efficiency and increase the light absorption. Moreover, the hybrid composites prepared by ultrasound-assisted physical mixing can effectively increase the interface area, which greatly facilitates the charge mobility and transfer in the interfaces between CuWO 4 and CuS.more »
-
Two-dimensional (2D) molybdenum ditelluride (MoTe 2 ) is an interesting material for fundamental study and applications, due to its ability to exist in different polymorphs of 2H, 1T, and 1T′, their phase change behavior, and unique electronic properties. Although much progress has been made in the growth of high-quality flakes and films of 2H and 1T′-MoTe 2 phases, phase-selective growth of all three phases remains a huge challenge, due to the lack of enough information on their growth mechanism. Herein, we present a novel approach to growing films and geometrical-shaped few-layer flakes of 2D 2H-, 1T-, and 1T′-MoTe 2 by atmospheric-pressure chemical vapor deposition (APCVD) and present a thorough understanding of the phase-selective growth mechanism by employing the concept of thermodynamics and chemical kinetics involved in the growth processes. Our approach involves optimization of growth parameters and understanding using thermodynamical software, HSC Chemistry. A lattice strain-mediated mechanism has been proposed to explain the phase selective growth of 2D MoTe 2 , and different chemical kinetics-guided strategies have been developed to grow MoTe 2 flakes and films.
-
Recently, a zipper two-dimensional (2D) material Bi 2 O 2 Se belonging to the layered bismuth oxychalcogenide (Bi 2 O 2 X: X = S, Se, Te) family, has emerged as an alternate candidate to van der Waals 2D materials for high-performance electronic and optoelectronic applications. This hints towards exploring the other members of the Bi 2 O 2 X family for their true potential and bismuth oxysulfide (Bi 2 O 2 S) could be the next member for such applications. Here, we demonstrate for the first time, the scalable room-temperature chemical synthesis and near-infrared (NIR) photodetection of ultrathin Bi 2 O 2 S nanosheets. The thickness of the freestanding nanosheets was around 2–3 nm with a lateral dimension of ∼80–100 nm. A solution-processed NIR photodetector was fabricated from ultrathin Bi 2 O 2 S nanosheets. The photodetector showed high performance, under 785 nm laser illumination, with a photoresponsivity of 4 A W −1 , an external quantum efficiency of 630%, and a normalized photocurrent-to-dark-current ratio of 1.3 × 10 10 per watt with a fast response time of 100 ms. Taken together, the findings suggest that Bi 2 O 2 S nanosheets could be a promising alternative 2D materialmore »
-
Transition metal carbides (MXenes) are an emerging family of highly conductive two-dimensional materials with additional functional properties introduced by surface terminations. Further modification of the surface terminations makes MXenes even more appealing for practical applications. Herein, we report a facile and environmentally benign synthesis of reduced Ti 3 C 2 T x MXene (r-Ti 3 C 2 T x ) via a simple treatment with l -ascorbic acid at room temperature. r-Ti 3 C 2 T x shows a six-fold increase in electrical conductivity, from 471 ± 49 for regular Ti 3 C 2 T x to 2819 ± 306 S m −1 for the reduced version. Additionally, we show an enhanced oxidation stability of r-Ti 3 C 2 T x as compared to regular Ti 3 C 2 T x . An examination of the surface-enhanced Raman scattering (SERS) activity reveals that the SERS enhancement factor of r-Ti 3 C 2 T x is an order of magnitude higher than that of regular Ti 3 C 2 T x . The improved SERS activity of r-Ti 3 C 2 T x is attributed to the charge transfer interaction between the MXene surface and probe molecules, re-enforced by an increasedmore »