The iconic, palmately compound leaves of Here, we present a new method that overcomes the challenge of nonhomologous landmarks in palmate, pinnate, and lobed leaves, using We analyze 341 leaves from 24 individuals from nine Intra‐leaf modeling offers a rapid, cost‐effective means of identifying
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Cannabis have attracted significant attention in the past. However, investigations into the genetic basis of leaf shape or its connections to phytochemical composition have yielded inconclusive results. This is partly due to prominent changes in leaflet number within a single plant during development, which has so far prevented the proper use of common morphometric techniques.Cannabis as an example. We model corresponding pseudo‐landmarks for each leaflet as angle‐radius coordinates and model them as a function of leaflet to create continuous polynomial models, bypassing the problems associated with variable number of leaflets between leaves.Cannabis accessions. Using 3591 pseudo‐landmarks in modeled leaves, we accurately predict accession identity, leaflet number, and relative node number.Cannabis accessions, making it a valuable tool for future taxonomic studies, cultivar recognition, and possibly chemical content analysis and sex identification, in addition to permitting the morphometric analysis of leaves in any species with variable numbers of leaflets or lobes.Free, publicly-accessible full text available May 17, 2025 -
Abstract Background Bud sports occur spontaneously in plants when new growth exhibits a distinct phenotype from the rest of the parent plant. The Witch’s Broom bud sport occurs occasionally in various grapevine (
Vitis vinifera ) varieties and displays a suite of developmental defects, including dwarf features and reduced fertility. While it is highly detrimental for grapevine growers, it also serves as a useful tool for studying grapevine development. We used the Witch’s Broom bud sport in grapevine to understand the developmental trajectories of the bud sports, as well as the potential genetic basis. We analyzed the phenotypes of two independent cases of the Witch’s Broom bud sport, in the Dakapo and Merlot varieties of grapevine, alongside wild type counterparts. To do so, we quantified various shoot traits, performed 3D X-ray Computed Tomography on dormant buds, and landmarked leaves from the samples. We also performed Illumina and Oxford Nanopore sequencing on the samples and called genetic variants using these sequencing datasets.Results The Dakapo and Merlot cases of Witch’s Broom displayed severe developmental defects, with no fruit/clusters formed and dwarf vegetative features. However, the Dakapo and Merlot cases of Witch’s Broom studied were also phenotypically different from one another, with distinct differences in bud and leaf development. We identified 968–974 unique genetic mutations in our two Witch’s Broom cases that are potential causal variants of the bud sports. Examining gene function and validating these genetic candidates through PCR and Sanger-sequencing revealed one strong candidate mutation in Merlot Witch’s Broom impacting the gene GSVIVG01008260001.
Conclusions The Witch’s Broom bud sports in both varieties studied had dwarf phenotypes, but the two instances studied were also vastly different from one another and likely have distinct genetic bases. Future work on Witch’s Broom bud sports in grapevine could provide more insight into development and the genetic pathways involved in grapevine.
-
Bollenbach, Tobias (Ed.)
Leaves are often described in language that evokes a single shape. However, embedded in that descriptor is a multitude of latent shapes arising from evolutionary, developmental, environmental, and other effects. These confounded effects manifest at distinct developmental time points and evolve at different tempos. Here, revisiting datasets comprised of thousands of leaves of vining grapevine (Vitaceae) and maracuyá (Passifloraceae) species, we apply a technique from the mathematical field of topological data analysis to comparatively visualize the structure of heteroblastic and ontogenetic effects on leaf shape in each group. Consistent with a morphologically closer relationship, members of the grapevine dataset possess strong core heteroblasty and ontogenetic programs with little deviation between species. Remarkably, we found that most members of the maracuyá family also share core heteroblasty and ontogenetic programs despite dramatic species-to-species leaf shape differences. This conservation was not initially detected using traditional analyses such as principal component analysis or linear discriminant analysis. We also identify two morphotypes of maracuyá that deviate from the core structure, suggesting the evolution of new developmental properties in this phylogenetically distinct sub-group. Our findings illustrate how topological data analysis can be used to disentangle previously confounded developmental and evolutionary effects to visualize latent shapes and hidden relationships, even ones embedded in complex, high-dimensional datasets.
Free, publicly-accessible full text available February 5, 2025 -
Drost, Hajk-Georg (Ed.)
Since they emerged approximately 125 million years ago, flowering plants have evolved to dominate the terrestrial landscape and survive in the most inhospitable environments on earth. At their core, these adaptations have been shaped by changes in numerous, interconnected pathways and genes that collectively give rise to emergent biological phenomena. Linking gene expression to morphological outcomes remains a grand challenge in biology, and new approaches are needed to begin to address this gap. Here, we implemented topological data analysis (TDA) to summarize the high dimensionality and noisiness of gene expression data using lens functions that delineate plant tissue and stress responses. Using this framework, we created a topological representation of the shape of gene expression across plant evolution, development, and environment for the phylogenetically diverse flowering plants. The TDA-based Mapper graphs form a well-defined gradient of tissues from leaves to seeds, or from healthy to stressed samples, depending on the lens function. This suggests that there are distinct and conserved expression patterns across angiosperms that delineate different tissue types or responses to biotic and abiotic stresses. Genes that correlate with the tissue lens function are enriched in central processes such as photosynthetic, growth and development, housekeeping, or stress responses. Together, our results highlight the power of TDA for analyzing complex biological data and reveal a core expression backbone that defines plant form and function.
Free, publicly-accessible full text available December 5, 2024 -
The field of plant science has grown dramatically in the past two decades, but global disparities and systemic inequalities persist. Here, we analyzed ~300,000 papers published over the past two decades to quantify disparities across nations, genders, and taxonomy in the plant science literature. Our analyses reveal striking geographical biases—affluent nations dominate the publishing landscape and vast areas of the globe have virtually no footprint in the literature. Authors in Northern America are cited nearly twice as many times as authors based in Sub-Saharan Africa and Latin America, despite publishing in journals with similar impact factors. Gender imbalances are similarly stark and show remarkably little improvement over time. Some of the most affluent nations have extremely male biased publication records, despite supposed improvements in gender equality. In addition, we find that most studies focus on economically important crop and model species, and a wealth of biodiversity is underrepresented in the literature. Taken together, our analyses reveal a problematic system of publication, with persistent imbalances that poorly capture the global wealth of scientific knowledge and biological diversity. We conclude by highlighting disparities that can be addressed immediately and offer suggestions for long-term solutions to improve equity in the plant sciences.more » « less
-
Abstract Persian walnuts (
Juglans regia L.) are the second most produced and consumed tree nut, with over 2.6 million metric tons produced in the 2022–2023 harvest cycle alone. The United States is the second largest producer, accounting for 25% of the total global supply. Nonetheless, producers face an ever‐growing demand in a more uncertain climate landscape, which requires effective and efficient walnut selection and breeding of new cultivars with increased kernel content and easy‐to‐open shells. Past and current efforts select for these traits using hand‐held calipers and eye‐based evaluations. Yet there is plenty of morphology that meets the eye but goes unmeasured, such as the volume of inner air or the convexity of the kernel. Here, we study the shape of walnut fruits based on X‐ray computed tomography three‐dimensional reconstructions. We compute 49 different morphological phenotypes for 1264 individual nuts comprising 149 accessions. These phenotypes are complemented by traits of breeding interest such as ease of kernel removal and kernel‐to‐nut weight ratio. Through allometric relationships, relative growth of one tissue to another, we identify possible biophysical constraints at play during development. We explore multiple correlations between all morphological and commercial traits and identify which morphological traits can explain the most variability of commercial traits. We show that using only volume‐ and thickness‐based traits, especially inner air content, we can successfully encode several of the commercial traits. -
Chen, Tsu-Wei ; Long, Stephen P (Ed.)Abstract Shape plays a fundamental role in biology. Traditional phenotypic analysis methods measure some features but fail to measure the information embedded in shape comprehensively. To extract, compare and analyse this information embedded in a robust and concise way, we turn to topological data analysis (TDA), specifically the Euler characteristic transform. TDA measures shape comprehensively using mathematical representations based on algebraic topology features. To study its use, we compute both traditional and topological shape descriptors to quantify the morphology of 3121 barley seeds scanned with X-ray computed tomography (CT) technology at 127 μm resolution. The Euler characteristic transform measures shape by analysing topological features of an object at thresholds across a number of directional axes. A Kruskal–Wallis analysis of the information encoded by the topological signature reveals that the Euler characteristic transform picks up successfully the shape of the crease and bottom of the seeds. Moreover, while traditional shape descriptors can cluster the seeds based on their accession, topological shape descriptors can cluster them further based on their panicle. We then successfully train a support vector machine to classify 28 different accessions of barley based exclusively on the shape of their grains. We observe that combining both traditional and topological descriptors classifies barley seeds better than using just traditional descriptors alone. This improvement suggests that TDA is thus a powerful complement to traditional morphometrics to comprehensively describe a multitude of ‘hidden’ shape nuances which are otherwise not detected.more » « less
-
Societal Impact Statement Citrus are intrinsically connected to human health and culture, preventing human diseases like scurvy and inspiring sacred rituals. Citrus fruits come in a stunning number of different sizes and shapes, ranging from small clementines to oversized pummelos, and fruits display a vast diversity of flavors and aromas. These qualities are key in both traditional and modern medicine and in the production of cleaning and perfume products. By quantifying and modeling overall fruit shape and oil gland distribution, we can gain further insight into citrus development and the impacts of domestication and improvement on multiple characteristics of the fruit.
Summary Citrus come in diverse sizes and shapes, and play a key role in world culture and economy. Citrus oil glands in particular contain essential oils which include plant secondary metabolites associated with flavor and aroma. Capturing and analyzing nuanced information behind the citrus fruit shape and its oil gland distribution provide a morphology‐driven path to further our insight into phenotype–genotype interactions.
We investigated the shape of citrus fruit of 51 accessions based on 3D X‐ray computed tomography (CT) scan reconstructions. Accessions include members of the three ancestral citrus species as well as related genera, and several interspecific hybrids. We digitally separate and compare the size of fruit endocarp, mesocarp, exocarp, and oil gland tissue. Based on the centers of the oil glands, overall fruit shape is approximated with an ellipsoid. Possible oil gland distributions on this ellipsoid surface are explored using directional statistics.
There is a strong allometry along fruit tissues; that is, we observe a strong linear relationship between the logarithmic volume of any pair of major tissues. This suggests that the relative growth of fruit tissues with respect to each other follows a power law. We also observe that on average, glands distance themselves from their nearest neighbor following a square root relationship, which suggests normal diffusion dynamics at play.
The observed allometry and square root models point to the existence of biophysical developmental constraints that govern novel relationships between fruit dimensions from both evolutionary and breeding perspectives. Understanding these biophysical interactions prompts an exciting research path on fruit development and breeding.