skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chiu, Ching-Kai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Graphene, with its two linearly dispersing Dirac points with opposite windings, is the minimal topological nodal configuration in the hexagonal Brillouin zone. Topological semimetals with higher-order nodes beyond the Dirac points have recently attracted considerable interest due to their rich chiral physics and their potential for the design of next-generation integrated devices. Here we report the experimental realization of the topological semimetal with quadratic nodes in a photonic microring lattice. Our structure hosts a robust second-order node at the center of the Brillouin zone and two Dirac points at the Brillouin zone boundary—the second minimal configuration, next to graphene, that satisfies the Nielsen–Ninomiya theorem. The symmetry-protected quadratic nodal point, together with the Dirac points, leads to the coexistence of massive and massless components in a hybrid chiral particle. This gives rise to unique transport properties, which we demonstrate by directly imaging simultaneous Klein and anti-Klein tunnelling in the microring lattice. 
    more » « less
  2. Abstract Tuning interactions between Dirac states in graphene has attracted enormous interest because it can modify the electronic spectrum of the 2D material, enhance electron correlations, and give rise to novel condensed‐matter phases such as superconductors, Mott insulators, Wigner crystals, and quantum anomalous Hall insulators. Previous works predominantly focus on the flat band dispersion of coupled Dirac states from different twisted graphene layers. In this work, a new route to realizing flat band physics in monolayer graphene under a periodic modulation from substrates is proposed. Graphene/SiC heterostructure is taken as a prototypical example and it is demonstrated experimentally that the substrate modulation leads to Dirac fermion cloning and, consequently, the proximity of the two Dirac cones of monolayer graphene in momentum space. Theoretical modeling captures the cloning mechanism of the Dirac states and indicates that moiré flat bands can emerge at certain magic lattice constants of the substrate, specifically when the period of modulation becomes nearly commensurate with the supercell of graphene. The results show that epitaxial single monolayer graphene on suitable substrates is a promising platform for exploring exotic many‐body quantum phases arising from interactions between Dirac electrons.  
    more » « less