skip to main content


Search for: All records

Creators/Authors contains: "Chiu, Daniel T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In a conjugated polymer‐based single‐particle heterojunction, stochastic fluctuations of the photogenerated hole population lead to spontaneous fluorescence switching. We found that 405 nm irradiation can induce charge recombination and activate the single‐particle emission. Based on these phenomena, we developed a novel class of semiconducting polymer dots that can operate in two superresolution imaging modes. The spontaneous switching mode offers efficient imaging of large areas, with <10 nm localization precision, while the photoactivation/deactivation mode offers slower imaging, with further improved localization precision (ca. 1 nm), showing advantages in resolving small structures that require high spatial resolution. Superresolution imaging of microtubules and clathrin‐coated pits was demonstrated, under both modes. The excellent localization precision and versatile imaging options provided by these nanoparticles offer clear advantages for imaging of various biological systems.

     
    more » « less
  2. Abstract

    Impaired glucose metabolism in diabetes causes severe acute and long‐term complications, making real‐time detection of blood glucose indispensable for diabetic patients. Existing continuous glucose monitoring systems are unsuitable for long‐term clinical glycemic management due to poor long‐term stability. Polymer dot (Pdot) glucose transducers are implantable optical nanosensors that exhibit excellent brightness, sensitivity, selectivity, and biocompatibility. Here, it is shown that hydrogen peroxide—a product of glucose oxidation in Pdot glucose sensors—degrades sensor performance via photobleaching, reduces glucose oxidase activity, and generates cytotoxicity. By adding catalase to a glucose oxidase‐based Pdot sensor to create an enzymatic cascade, the hydrogen peroxide product of glucose oxidation is rapidly decomposed by catalase, preventing its accumulation and improving the sensor's photostability, enzymatic activity, and biocompatibility. Thus, a next‐generation Pdot glucose transducer with a multienzyme reaction system (Pdot–GOx/CAT) that provides excellent sensing characteristics as well as greater detection system stability is presented. Pdot glucose transducers that incorporate this enzymatic cascade to eliminate hydrogen peroxide will possess greater long‐term stability for improved continuous glucose monitoring in diabetic patients.

     
    more » « less