skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cho, Yongjoon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Organic solar cells (OSCs) using non-fullerene acceptors (NFAs) afford exceptional photovoltaic performance metrics, however, their stability remains a significant challenge. Existing OSC stability studies focus on understanding degradation rate-performance relationships, improving interfacial layers, and suppressing degradative chemical reaction pathways. Nevertheless, there is a knowledge gap concerning how such degradation affects crystal structure, electronic states, and recombination dynamics that ultimately impact NFA performance. Here we seek a quantitative relationship between OSC metrics and blend morphology, trap density of states, charge carrier mobility, and recombination processes during the UV-light-induced degradation of PBDB-TF:Y6 inverted solar cells as the PCE (power conversion efficiency) falls from 17.3 to 5.0%. Temperature-dependent electrical and impedance measurements reveal deep traps at 0.48 eV below the conduction band that are unaffected by Y6 degradation, and shallow traps at 0.15 eV below the conduction band that undergo a three-fold density of states increase at the PCE degradation onset. Computational analysis correlates vinyl oxidation with a new trap state at 0.25 eV below the conduction band, likely involving charge transfer from the UV-absorbing ZnO electron transport layer. In-situ integrated photocurrent analysis and transient absorption spectroscopy reveal that these traps lower electron mobility and increase recombination rates during degradation. Grazing-incidence wide-angle x-ray scattering and computational analysis reveal that the degraded Y6 crystallite morphology is largely preserved but that <1% of degraded Y6 molecules cause OSC PCE performance degradation by ≈50%. Together the detailed electrical, impedance, morphological, ultrafast spectroscopic, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) spectroscopy, and computational data reveal that the trap state energies and densities accompanying Y6 vinyl oxidation are primarily responsible for the PCE degradation in these operating NFA-OSCs. 
    more » « less
  2. Abstract A detailed investigation addressing the effects of functionalizing conjugated polymers with oligo(ethylene glycol) (EGn) sidechains on the performance and polymer‐electrolyte compatibility of electrochromic devices (ECDs) is reported. The electrochemistry for a series of donor‐acceptor copolymers having near‐infrared (NIR)‐optical absorption, where the donor fragment is 3,4‐ethylenedioxythiophene (EDOT) or an EGnfunctionalized bithiophene (g2T) and the acceptor fragment is diketopyrrolopyrrole (DPP) functionalized with branched alkyl or EGnsidechains, is extensively probed. ECDs are next fabricated and it is found that EGnsidechain incorporation must be finely balanced to promote polymer‐electrolyte compatibility and provide efficient ion exchange. Proper electrolyte‐cation pairing and polymer structural tuning affords a 2x increase in optical contrast (from 12% to 24%) and >60x reduction in switching time (from 20 to 0.3 s). Atomic force microscopy (AFM)/grazing incidence wide‐angle X‐ray scattering (GIWAXS) characterization of the polymer film morphology/microstructure reveals that an over‐abundance of EGnsidechains generates large polymer crystallites, which can suppress ion exchange. Lastly, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) indicates sidechain/electrolyte identity does not influence the electrolyte penetration depth into the films, and EGnsidechain inclusion increases electrolyte cation uptake. The material structural design insight and guidelines regarding the polymer‐electrolyte ion insertion/expulsion dynamics reported here should be of significant utility for developing next‐generation mixed ionic‐electronic conducting materials. 
    more » « less