skip to main content

Search for: All records

Creators/Authors contains: "Chockalingam, Sriram P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Reconstruction of genome-scale networks from gene expression data is an actively studied problem. A wide range of methods that differ between the types of interactions they uncover with varying trade-offs between sensitivity and specificity have been proposed. To leverage benefits of multiple such methods, ensemble network methods that combine predictions from resulting networks have been developed, promising results better than or as good as the individual networks. Perhaps owing to the difficulty in obtaining accurate training examples, these ensemble methods hitherto are unsupervised. Results In this article, we introduce EnGRaiN, the first supervised ensemble learning method to constructmore »gene networks. The supervision for training is provided by small training datasets of true edge connections (positives) and edges known to be absent (negatives) among gene pairs. We demonstrate the effectiveness of EnGRaiN using simulated datasets as well as a curated collection of Arabidopsis thaliana datasets we created from microarray datasets available from public repositories. EnGRaiN shows better results not only in terms of receiver operating characteristic and PR characteristics for both real and simulated datasets compared with unsupervised methods for ensemble network construction, but also generates networks that can be mined for elucidating complex biological interactions. Availability and implementation EnGRaiN software and the datasets used in the study are publicly available at the github repository: Supplementary information Supplementary data are available at Bioinformatics online.« less
    Free, publicly-accessible full text available December 9, 2022
  2. Free, publicly-accessible full text available November 1, 2022
  3. Abstract Background Alignment-free methods for sequence comparisons have become popular in many bioinformatics applications, specifically in the estimation of sequence similarity measures to construct phylogenetic trees. Recently, the average common substring measure, ACS , and its k -mismatch counterpart, ACS k , have been shown to produce results as effective as multiple-sequence alignment based methods for reconstruction of phylogeny trees. Since computing ACS k takes O ( n log k n ) time and hence impractical for large datasets, multiple heuristics that can approximate ACS k have been introduced. Results In this paper, we present a novel linear-time heuristic tomore »approximate ACS k , which is faster than computing the exact ACS k while being closer to the exact ACS k values compared to previously published linear-time greedy heuristics. Using four real datasets, containing both DNA and protein sequences, we evaluate our algorithm in terms of accuracy, runtime and demonstrate its applicability for phylogeny reconstruction. Our algorithm provides better accuracy than previously published heuristic methods, while being comparable in its applications to phylogeny reconstruction. Conclusions Our method produces a better approximation for ACS k and is applicable for the alignment-free comparison of biological sequences at highly competitive speed. The algorithm is implemented in Rust programming language and the source code is available at .« less