skip to main content

Search for: All records

Creators/Authors contains: "Choi, J.-W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fluorescent portable monitoring systems provide real-time and on-site analysis of a sample solution, avoiding transportation delays and solution degradation. However, some applications, such as environmental monitoring of bodies of water with algae pollution, rely on the temperature control that off-site systems provide for adequate solution results. The goal of this research is the development of a temperature stabilization module for a portable fluorescent sensing platform, which is necessary to prevent inaccurate results. Using a Peltier device-based system, the module heats/cools a solution through digital-to-analog control of the current, using three surface-mounted temperature modules attached to a copper cuvette holder, whichmore »is directly attached to the Peltier device. This system utilizes an in-house algorithm for control, which effectively minimizes temperature overshooting when a change is enacted. Finally, with the use of a sample fluorescent dye, Rhodamine B, the system's controllability is highlighted through the monitoring of Rhodamine B's fluorescence emission decrease as the solution temperature increases.« less
  2. Force sensors play an important role in the biomedical devices industry, especially in motion- and pressure-related devices. Such sensors are designed to collect force or pressure data by converting it into electrical signals. The data can then be sent to and analyzed by a local or cloud-based processing unit. It is vital that the sensors can be fabricated in a way that time efficiency, cost efficiency, and quality are all maximized. The advent of three-dimensional (3D) printing has greatly facilitated prototyping and customized manufacturing, as compared to older crafting methods (such as welding and woodworking), 3D printing requires less skillmore »and involves less costly materials making it much more time- and cost-efficient. Technological advancements have also improved the quality of the actual sensing materials used in sensor-based devices, and notably, carbon-based materials have become increasingly favored for use as sensing elements. In the presented sensor, the modern sensor fabrication methods of 3D printing and using carbon materials as sensing elements are combined. The sensor presented as a proof of the above concepts is a cantilever flex sensor. The sensor consists of a 30 mm-long cantilever extending from a 2.5 mm-thick wall, with a second wall of the same thickness parallel to the cantilever. After designing this structure and printing it using a 3D printer, the top surface of the cantilever was coated with a thin layer of conductive carbon paste and two copper wires were stripped and soldered to a pair of copper alligator clips, to be used for testing purposes. To test the sensor, the two copper wires were clipped onto the sensor (Figure 1A) and each wire was connected to a multimeter probe on the end opposite of the alligator clip. Then, using a set of four through holes in the parallel wall (along with a slotted rod), the tip of the cantilever was pressed down to an angle of 5, 10, 15, or 20 degrees (Figures 1B, 1C, 1D, and 1E, respectively) below the original plane of the cantilever and held there for 2 minutes. The resistance between the ends of the cantilever was measured throughout each trial by the multimeter, and the results (Figure 1F) for each angle were compiled and analyzed to determine the effect of each depression angle on impedance change, and thus, the overall effectiveness of the sensor. In the future, a notable improvement would be miniaturizing the sensor to facilitate in integration of the sensor in wearable and biomedical devices.« less
  3. Fluorescence dyes are widely used in biomolecule detection/quantification, flow tracing reference for gases and liquids, pathogen detection, and other life science applications. However, fluorescence emission efficiency of the dyes is easily affected by several parameters, such as polarity, pH, and temperature. Therefore, it is essential to monitor and control these parameters for reliable and accurate measurements. We propose a 3D-printed copper cuvette holder (i.materialise, Belgium) joined with a Peltier-based temperature controller platform for stable reading of fluorescence emission from the dye. For demonstration of temperature effects on fluorescence efficiency, rhodamine B, which is one of the widely used fluorescence standardsmore »and probes in bioscience, was used. For excitation, 530 nm wavelength lighting was utilized for stimulating the rhodamine B. A Peltier device was controlled with different levels of direct current (DC) to demonstrate the temperature controlling capability of the device and fluorescence efficiency of the rhodamine B was tested with a varying temperature level: 20 ºC to 80 ºC. For our device, the temperature will be monitored by temperature ICs that are attached at three different points of the copper body for uniform temperature heating of the solution in a cuvette. We have monitored the temperature distribution of the copper holder with an external temperature monitor, the DT304, and determined that the temperature is maintained to with a 5 ºC. We plan to monitor the solution temperature directly with the use of an infrared temperature sensor positioned down at the opening of the cuvette. The ambient temperature and the temperature of the opposite junction of the Peltier device will be monitored through the use of two thermocouples. An analysis of several different temperature components of the device allow for a better interpretation of what is happening in the system. Moreover, the implementation of a water-cooling apparatus will allow for a way to quickly decrease the temperature of the cuvette when desirable. These features allow for the sample to be monitored efficiently, allowing for proper stabilization techniques and the ability to fluctuate the temperature when required of an application. In summary, we have developed an 3D-printed copper cuvette holder with a Peltier-based temperature controller platform for stable reading of fluorescence emission from the dye or fluorophore solution. Our compact temperature controller system provides viable option for any fluorometers to easily apply it for temperature stabilization during the fluorescence dye testing.« less