By using surface brightness maps of Tycho’s supernova remnant (SNR) in radio and X-rays, along with the properties of thermal and synchrotron emission, we have derived the postshock density and magnetic field (MF) strength distributions over the projection of this remnant. Our analysis reveals a density gradient oriented toward the northwest, while the MF strength gradient aligns with the Galactic plane, pointing eastward. Additionally, utilizing this MF map, we have derived the spatial distributions of the cutoff frequency and maximum energy of electrons in Tycho’s SNR. We further comment on the implications of these findings for interpreting the gamma-ray emission from Tycho’s SNR.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
ABSTRACT The shell of the classical nova V5668 Sgr was resolved by ALMA at the frequency of 230 GHz 927 d after eruption, showing that most of the continuum bremsstrahlung emission originates in clumps with diameter smaller than 1015 cm. Using Very Large Array radio observations, obtained between days 2 and 1744 after eruption, at frequencies between 1 and 35 GHz, we modelled the nova spectra, assuming first that the shell is formed by a fixed number of identical clumps, and afterwards with the clumps having a power-law distribution of sizes, and were able to obtain the clump’s physical parameters (radius, density, and temperature). We found that the density of the clumps decreases linearly with the increase of the shell’s volume, which is compatible with the existence of a second media, hotter and thinner, in pressure equilibrium with the clumps. We show that this thinner media could be responsible for the emission of the hard X-rays observed at the early times of the nova eruption, and that the clump’s temperature evolution follows that of the super-soft X-ray luminosity. We propose that the clumps were formed in the radiative shock produced by the collision of the fast wind of the white dwarf after eruption, with the slower velocity of the thermonuclear ejecta. From the total mass of the clumps, the observed expansion velocity and thermonuclear explosion models, we obtained an approximate value of 1.25 M⊙ for the mass of the white dwarf, a central temperature of 107 K and an accretion rate from the secondary star of 10−9–10−8 M⊙ yr−1.
-
ABSTRACT Radio emission has been detected from tens of white dwarfs, in particular in accreting systems. Additionally, radio emission has been predicted as a possible outcome of a planetary system around a white dwarf. We searched for 3 GHz radio continuum emission in 846 000 candidate white dwarfs previously identified in Gaia using the Very Large Array Sky Survey (VLASS) Epoch 1 Quick Look Catalogue. We identified 13 candidate white dwarfs with a counterpart in VLASS within 2 arcsec. Five of those were found not to be white dwarfs in follow-up or archival spectroscopy, whereas seven others were found to be chance alignments with a background source in higher resolution optical or radio images. The remaining source, WDJ204259.71+152108.06, is found to be a white dwarf and M-dwarf binary with an orbital period of 4.1 d and long-term stochastic optical variability, as well as luminous radio and X-ray emission. For this binary, we find no direct evidence of a background contaminant, and a chance alignment probability of only ≈2 per cent. However, other evidence points to the possibility of an unfortunate chance alignment with a background radio and X-ray emitting quasar, including an unusually poor Gaia DR3 astrometric solution for this source. With at most one possible radio emitting white dwarf found, we conclude that strong (≳1–3 mJy) radio emission from white dwarfs in the 3 GHz band is virtually non-existent outside of interacting binaries.
-
Abstract In 2021 August, the Fermi Large Area Telescope, H.E.S.S., and MAGIC detected GeV and TeV
γ -ray emission from an outburst of recurrent nova RS Ophiuchi. This detection represents the first very high-energyγ -rays observed from a nova, and it opens a new window to study particle acceleration. Both H.E.S.S. and MAGIC described the observedγ -rays as arising from a single, external shock. In this paper, we perform detailed, multi-zone modeling of RS Ophiuchi’s 2021 outburst, including a self-consistent prescription for particle acceleration and magnetic field amplification. We demonstrate that, contrary to previous work, a single shock cannot simultaneously explain RS Ophiuchi’s GeV and TeV emission, in particular the spectral shape and distinct light-curve peaks. Instead, we put forward a model involving multiple shocks that reproduces the observedγ -ray spectrum and temporal evolution. The simultaneous appearance of multiple distinct velocity components in the nova optical spectrum over the first several days of the outburst supports the presence of distinct shocks, which may arise either from the strong latitudinal dependence of the density of the external circumbinary medium (e.g., in the binary equatorial plane versus the poles) or due to internal collisions within the white dwarf ejecta (which power theγ -ray emission in classical novae). -
ABSTRACT We present radio observations of the symbiotic recurrent nova V3890 Sagitarii following the 2019 August eruption obtained with the MeerKAT radio telescope at 1.28 GHz and Karl G. Janksy Very Large Array (VLA) at 1.26−35 GHz. The radio light curves span from day 1 to 540 days after eruption and are dominated by synchrotron emission produced by the expanding nova ejecta interacting with the dense wind from an evolved companion in the binary system. The radio emission is detected early on (day 6) and increases rapidly to a peak on day 15. The radio luminosity increases due to a decrease in the opacity of the circumstellar material in front of the shocked material and fades as the density of the surrounding medium decreases and the velocity of the shock decelerates. Modelling the light curve provides an estimated mass-loss rate of ${\overset{\hbox{$\bullet $}}{M}}_{\textrm {wind}} \approx 10^{-8}\, {\textrm {M}}_\odot ~{\textrm {yr}}^{-1}$ from the red giant star and ejecta mass in the range of Mej = 10−5––10−6 M⊙ from the surface of the white dwarf. V3890 Sgr likely hosts a massive white dwarf similar to other symbiotic recurrent novae, thus considered a candidate for supernovae type Ia (SNe Ia) progenitor. However, its radio flux densities compared to upper limits for SNe Ia have ruled it out as a progenitor for SN 2011fe like supernovae.
-
Abstract We present the discovery of a new optical/X-ray source likely associated with the Fermi γ -ray source 4FGL J1408.6–2917. Its high-amplitude periodic optical variability, large spectroscopic radial-velocity semiamplitude, evidence for optical emission lines and flaring, and X-ray properties together imply the source is probably a new black widow millisecond pulsar binary. We compile the properties of the 41 confirmed and suspected field black widows, finding a median secondary mass of 0.027 ± 0.003 M ⊙ . Considered jointly with the more massive redback millisecond pulsar binaries, we find that the “spider” companion mass distribution remains strongly bimodal, with essentially zero systems having companion masses of between ∼0.07 and 0.1 M ⊙ . X-ray emission from black widows is typically softer and less luminous than in redbacks, consistent with less efficient particle acceleration in the intrabinary shock in black widows, excepting a few systems that appear to have more efficient “redback-like” shocks. Together black widows and redbacks dominate the census of the fastest spinning field millisecond pulsars in binaries with known companion types, making up ≳80% of systems with P spin < 2 ms. Similar to redbacks, the neutron star masses in black widows appear on average significantly larger than the canonical 1.4 M ⊙ , and many of the highest-mass neutron stars claimed to date are black widows with M NS ≳ 2.1 M ⊙ . Both of these observations are consistent with an evolutionary picture where spider millisecond pulsars emerge from short orbital period progenitors that had a lengthy period of mass transfer initiated while the companion was on the main sequence, leading to fast spins and high masses.more » « less
-
Star formation in galaxies is regulated by turbulence, outflows, gas heating and cloud dispersal -- processes which depend sensitively on the properties of the interstellar medium (ISM) into which supernovae (SNe) explode. Unfortunately, direct measurements of ISM environments around SNe remain scarce, as SNe are rare and often distant. Here we demonstrate a new approach: mapping the ISM around the massive stars that are soon to explode. This provides a much larger census of explosion sites than possible with only SNe, and allows comparison with sensitive, high-resolution maps of the atomic and molecular gas from the Jansky VLA and ALMA. In the well-resolved Local Group spiral M33, we specifically observe the environments of red supergiants (RSGs, progenitors of Type II SNe), Wolf-Rayet stars (WRs, tracing stars >30 M⊙, and possibly future stripped-envelope SNe), and supernova remnants (SNRs, locations where SNe have exploded). We find that massive stars evolve not only in dense, molecular-dominated gas (with younger stars in denser gas), but also a substantial fraction (∼45\% of WRs; higher for RSGs) evolve in lower-density, atomic-gas-dominated, inter-cloud media. We show that these measurements are consistent with expectations from different stellar-age tracer maps, and can be useful for validating SN feedback models in numerical simulations of galaxies. Along with the discovery of a 20-pc diameter molecular gas cavity around a WR, these findings re-emphasize the importance of pre-SN/correlated-SN feedback evacuating the dense gas around massive stars before explosion, and the need for high-resolution (down to pc-scale) surveys of the multi-phase ISM in nearby galaxies.more » « lessFree, publicly-accessible full text available October 26, 2024
-
Abstract The conditions under which accreting neutron stars launch radio-emitting jets and/or outflows are still poorly understood. The ultracompact X-ray binary X1850–087, located in the globular cluster NGC 6712, is a persistent atoll-type X-ray source that has previously shown unusual radio-continuum variability. Here we present the results of a pilot radio-monitoring program of X1850–087 undertaken with the Karl G. Jansky Very Large Array, with simultaneous or quasi-simultaneous Swift/XRT data obtained at each epoch. The binary is clearly detected in the radio in two of the six new epochs. When combined with previous data, these results suggest that X1850–087 shows radio emission at a slightly elevated hard-state X-ray luminosity of
L X ≳ 2 × 1036erg s−1, but no radio emission in its baseline hard stateL X ∼ 1036erg s−1. No clear X-ray spectral changes are associated with this factor of ≳10 radio variability. At all detected epochs, X1850–087 has a flat to inverted radio spectral index, more consistent with the partially absorbed optically thick synchrotron of a compact jet rather than the evolving optically thick to thin emission associated with transient expanding synchrotron-emitting ejecta. If the radio emission in X1850–087 is indeed due to a compact jet, then it is plausibly being launched and quenched in the hard state on timescales as short as a few days. Future radio monitoring of X1850–087 could help elucidate the conditions under which compact jets are produced around hard-state accreting neutron stars. -
ABSTRACT Weakly accreting black hole X-ray binaries launch compact radio jets that persist even in the quiescent spectral state, at X-ray luminosities ≲ 10−5 of the Eddington luminosity. However, radio continuum emission has been detected from only a few of these quiescent systems, and little is known about their radio variability. Jet variability can lead to misclassification of accreting compact objects in quiescence, and affects the detectability of black hole X-ray binaries in next-generation radio surveys. Here we present the results of a radio monitoring campaign of A0620 − 00, one of the best-studied and least-luminous known quiescent black hole X-ray binaries. We observed A0620 − 00 at 9.8 GHz using the Karl G Jansky Very Large Array on 31 epochs from 2017 to 2020, detecting the source $\sim 75{{\ \rm per\, cent}}$ of the time. We see significant variability over all time-scales sampled, and the observed flux densities follow a lognormal distribution with μ = 12.5 μJy and σ = 0.22 dex. In no epoch was A0620 − 00 as bright as in 2005 (51 ± 7 μJy), implying either that this original detection was obtained during an unusually bright flare, or that the system is fading in the radio over time. We present tentative evidence that the quiescent radio emission from A0620 − 00 is less variable than that of V404 Cyg, the only other black hole binary with comparable data. Given that V404 Cyg has a jet radio luminosity ∼20 times higher than A0620 − 00, this comparison could suggest that less luminous jets are less variable in quiescence.