Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2025
-
Over the past few years, the synergic usage of unmanned aerial vehicles (later drones) and Internet of Things (IoT) has successfully transformed into the Internet of Drones (IoD) paradigm, where the data of interest is gathered and delivered to the Zone Service Provider (ZSP) by drones for substantial additional analysis. Considering the sensitivity of collected information and the impact of information disclosure, information privacy and security issues should be resolved properly so that the maximum potential of IoD can be realized in the increasingly complex cyber threat environment. Ideally, an authentication and key agreement protocol can be adopted to establish secure communications between drones and the ZSP in an insecure environment. Nevertheless, a large group of drones authenticating with the ZSP simultaneously will lead to a severe authentication signaling congestion, which inevitably degrades the quality of service (QoS) of IoD systems. To properly address the above-mentioned issues, a lightweight group authentication protocol, called liteGAP, is proposed in this paper. liteGAP can achieve the authenticated key establishment between a group of drones and the ZSP concurrently in the IoD environment using lightweight operations such as hash function, bitwise XOR, and physical unclonable function (PUF). We verify liteGAP using AVISPA (a tool for the automatic verification of security protocols) and conduct formal and informal security analysis, proving that liteGAP meets all pre-defined security requirements and withstand various potential cyber attacks. Moreover, we develop an experimental framework and conduct extensive experiments on liteGAP and two benchmark schemes (e.g., GASE and rampIoD). Experimental findings show that liteGAP outperforms its counterparts in terms of computational cost as well as communication overhead.more » « lessFree, publicly-accessible full text available April 1, 2025
-
Background The proliferation of mobile health (mHealth) applications is partly driven by the advancements in sensing and communication technologies, as well as the integration of artificial intelligence techniques. Data collected from mHealth applications, for example, on sensor devices carried by patients, can be mined and analyzed using artificial intelligence–based solutions to facilitate remote and (near) real-time decision-making in health care settings. However, such data often sit in data silos, and patients are often concerned about the privacy implications of sharing their raw data. Federated learning (FL) is a potential solution, as it allows multiple data owners to collaboratively train a machine learning model without requiring access to each other’s raw data. Objective The goal of this scoping review is to gain an understanding of FL and its potential in dealing with sensitive and heterogeneous data in mHealth applications. Through this review, various stakeholders, such as health care providers, practitioners, and policy makers, can gain insight into the limitations and challenges associated with using FL in mHealth and make informed decisions when considering implementing FL-based solutions. Methods We conducted a scoping review following the guidelines of PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). We searched 7 commonly used databases. The included studies were analyzed and summarized to identify the possible real-world applications and associated challenges of using FL in mHealth settings. Results A total of 1095 articles were retrieved during the database search, and 26 articles that met the inclusion criteria were included in the review. The analysis of these articles revealed 2 main application areas for FL in mHealth, that is, remote monitoring and diagnostic and treatment support. More specifically, FL was found to be commonly used for monitoring self-care ability, health status, and disease progression, as well as in diagnosis and treatment support of diseases. The review also identified several challenges (eg, expensive communication, statistical heterogeneity, and system heterogeneity) and potential solutions (eg, compression schemes, model personalization, and active sampling). Conclusions This scoping review has highlighted the potential of FL as a privacy-preserving approach in mHealth applications and identified the technical limitations associated with its use. The challenges and opportunities outlined in this review can inform the research agenda for future studies in this field, to overcome these limitations and further advance the use of FL in mHealth.more » « less