There are two broad modeling paradigms in scientific applications: forward and inverse. While forward modeling estimates the observations based on known causes, inverse modeling attempts to infer the causes given the observations. Inverse problems are usually more critical as well as difficult in scientific applications as they seek to explore the causes that cannot be directly observed. Inverse problems are used extensively in various scientific fields, such as geophysics, health care and materials science. Exploring the relationships from properties to microstructures is one of the inverse problems in material science. It is challenging to solve the microstructure discovery inverse problem, because it usually needs to learn a one-to-many nonlinear mapping. Given a target property, there are multiple different microstructures that exhibit the target property, and their discovery also requires significant computing time. Further, microstructure discovery becomes even more difficult because the dimension of properties (input) is much lower than that of microstructures (output). In this work, we propose a framework consisting of generative adversarial networks and mixture density networks for inverse modeling of structure–property linkages in materials, i.e., microstructure discovery for a given property. The results demonstrate that compared to baseline methods, the proposed framework can overcome the above-mentionedmore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Deep learning (DL) is one of the fastest-growing topics in materials data science, with rapidly emerging applications spanning atomistic, image-based, spectral, and textual data modalities. DL allows analysis of unstructured data and automated identification of features. The recent development of large materials databases has fueled the application of DL methods in atomistic prediction in particular. In contrast, advances in image and spectral data have largely leveraged synthetic data enabled by high-quality forward models as well as by generative unsupervised DL methods. In this article, we present a high-level overview of deep learning methods followed by a detailed discussion of recent developments of deep learning in atomistic simulation, materials imaging, spectral analysis, and natural language processing. For each modality we discuss applications involving both theoretical and experimental data, typical modeling approaches with their strengths and limitations, and relevant publicly available software and datasets. We conclude the review with a discussion of recent cross-cutting work related to uncertainty quantification in this field and a brief perspective on limitations, challenges, and potential growth areas for DL methods in materials science.Free, publicly-accessible full text available December 1, 2023
-
Abstract Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of process–property relationships for porosity prediction require many experiments or computationally expensive simulations without considering environmental variations. While efforts that adopt real-time monitoring sensors can only detect porosity after its occurrence rather than predicting it ahead of time. In this study, a novel porosity detection-prediction framework is proposed based on deep learning that predicts porosity in the next layer based on thermal signatures of the previous layers. The proposed framework is validated in terms of its ability to accurately predict lack of fusion porosity using computerized tomography (CT) scans, which achieves a F1-score of 0.75. The framework presented in this work can be effectively applied to quality control in additive manufacturing. As a function of the predicted porosity positions, laser process parameters in the next layer can be adjusted to avoid more part porosity in the future or the existing porosity could be filled. If the predicted part porosity is not acceptable regardless of laser parameters, the building process can be stopped to minimize the loss.