skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Choudhary, Alok"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Traditionally, materials discovery has been driven more by evidence and intuition than by systematic design. However, the advent of “big data” and an exponential increase in computational power have reshaped the landscape. Today, we use simulations, artificial intelligence (AI), and machine learning (ML) to predict materials characteristics, which dramatically accelerates the discovery of novel materials. For instance, combinatorial megalibraries, where millions of distinct nanoparticles are created on a single chip, have spurred the need for automated characterization tools. This paper presents an ML model specifically developed to perform real-time binary classification of grayscale high-angle annular dark-field images of nanoparticles sourced from these megalibraries. Given the high costs associated with downstream processing errors, a primary requirement for our model was to minimize false positives while maintaining efficacy on unseen images. We elaborate on the computational challenges and our solutions, including managing memory constraints, optimizing training time, and utilizing Neural Architecture Search tools. The final model outperformed our expectations, achieving over 95% precision and a weighted F-score of more than 90% on our test data set. This paper discusses the development, challenges, and successful outcomes of this significant advancement in the application of AI and ML to materials discovery.

     
    more » « less
  2. Abstract Modern machine learning (ML) and deep learning (DL) techniques using high-dimensional data representations have helped accelerate the materials discovery process by efficiently detecting hidden patterns in existing datasets and linking input representations to output properties for a better understanding of the scientific phenomenon. While a deep neural network comprised of fully connected layers has been widely used for materials property prediction, simply creating a deeper model with a large number of layers often faces with vanishing gradient problem, causing a degradation in the performance, thereby limiting usage. In this paper, we study and propose architectural principles to address the question of improving the performance of model training and inference under fixed parametric constraints. Here, we present a general deep-learning framework based on branched residual learning (BRNet) with fully connected layers that can work with any numerical vector-based representation as input to build accurate models to predict materials properties. We perform model training for materials properties using numerical vectors representing different composition-based attributes of the respective materials and compare the performance of the proposed models against traditional ML and existing DL architectures. We find that the proposed models are significantly more accurate than the ML/DL models for all data sizes by using different composition-based attributes as input. Further, branched learning requires fewer parameters and results in faster model training due to better convergence during the training phase than existing neural networks, thereby efficiently building accurate models for predicting materials properties. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract Materials design aims to identify the material features that provide optimal properties for various engineering applications, such as aerospace, automotive, and naval. One of the important but challenging problems for materials design is to discover multiple polycrystalline microstructures with optimal properties. This paper proposes an end-to-end artificial intelligence (AI)-driven microstructure optimization framework for elastic properties of materials. In this work, the microstructure is represented by the Orientation Distribution Function (ODF) that determines the volume densities of crystallographic orientations. The framework was evaluated on two crystal systems, cubic and hexagonal, for Titanium (Ti) in Joint Automated Repository for Various Integrated Simulations (JARVIS) database and is expected to be widely applicable for materials with multiple crystal systems. The proposed framework can discover multiple polycrystalline microstructures without compromising the optimal property values and saving significant computational time. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Abstract

    Contemporary materials science has seen an increasing application of various artificial intelligence techniques in an attempt to accelerate the materials discovery process using forward modeling for predictive analysis and inverse modeling for optimization and design. Over the last decade or so, the increasing availability of computational power and large materials datasets has led to a continuous evolution in the complexity of the techniques used to advance the frontier. In this Review, we provide a high-level overview of the evolution of artificial intelligence in contemporary materials science for the task of materials property prediction in forward modeling. Each stage of evolution is accompanied by an outline of some of the commonly used methodologies and applications. We conclude the work by providing potential future ideas for further development of artificial intelligence in materials science to facilitate the discovery, design, and deployment workflow.

    Graphical abstract

     
    more » « less
  5. Free, publicly-accessible full text available June 18, 2024
  6. Free, publicly-accessible full text available June 18, 2024
  7. Abstract While experiments and DFT-computations have been the primary means for understanding the chemical and physical properties of crystalline materials, experiments are expensive and DFT-computations are time-consuming and have significant discrepancies against experiments. Currently, predictive modeling based on DFT-computations have provided a rapid screening method for materials candidates for further DFT-computations and experiments; however, such models inherit the large discrepancies from the DFT-based training data. Here, we demonstrate how AI can be leveraged together with DFT to compute materials properties more accurately than DFT itself by focusing on the critical materials science task of predicting “formation energy of a material given its structure and composition”. On an experimental hold-out test set containing 137 entries, AI can predict formation energy from materials structure and composition with a mean absolute error (MAE) of 0.064 eV/atom; comparing this against DFT-computations, we find that AI can significantly outperform DFT computations for the same task (discrepancies of $$>0.076$$ > 0.076 eV/atom) for the first time. 
    more » « less
  8. Abstract

    There are two broad modeling paradigms in scientific applications: forward and inverse. While forward modeling estimates the observations based on known causes, inverse modeling attempts to infer the causes given the observations. Inverse problems are usually more critical as well as difficult in scientific applications as they seek to explore the causes that cannot be directly observed. Inverse problems are used extensively in various scientific fields, such as geophysics, health care and materials science. Exploring the relationships from properties to microstructures is one of the inverse problems in material science. It is challenging to solve the microstructure discovery inverse problem, because it usually needs to learn a one-to-many nonlinear mapping. Given a target property, there are multiple different microstructures that exhibit the target property, and their discovery also requires significant computing time. Further, microstructure discovery becomes even more difficult because the dimension of properties (input) is much lower than that of microstructures (output). In this work, we propose a framework consisting of generative adversarial networks and mixture density networks for inverse modeling of structure–property linkages in materials, i.e., microstructure discovery for a given property. The results demonstrate that compared to baseline methods, the proposed framework can overcome the above-mentioned challenges and discover multiple promising solutions in an efficient manner.

     
    more » « less