skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Choudhary, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Full-disk measurements of the solar magnetic field by the Helioseismic and Magnetic Imager (HMI) are often used for magnetic field extrapolations, but its limited spatial and spectral resolution can lead to significant errors. We compare HMI data with observations of NOAA 12104 by the Hinode Spectropolarimeter (SP) to derive a scaling curve for the magnetic field strength,B. The SP data in the Feilines at 630 nm were inverted with the SIR code. We find that the Milne–Eddington inversion of HMI underestimatesBand the line-of-sight flux, Φ, in all granulation surroundings by an average factor of 4.5 in plage and 9.2 in the quiet Sun in comparison to the SP. The deviation is inversely proportional to the magnetic fill factor,f, in the SP results. We derived a correction curve to match the HMIBwith the effective fluxBfin the SP data that scaled HMIBup by 1.3 on average. A comparison of non-force-free field extrapolations over a larger field of view without and with the correction revealed minor changes in connectivity and a proportional scaling of electric currents and Lorentz force (∝B∼ 1.3) and free energy (∝B2 ∼ 2). Magnetic field extrapolations of HMI vector data with large areas of plage and quiet Sun will underestimate the photospheric magnetic field strength by a factor of 5–10 and the coronal magnetic flux by at least a factor of 2. An HMI inversion including a fill factor would mitigate the problem. 
    more » « less
  2. Context. The inverse Evershed flow (IEF) is a mass motion towards sunspots at chromospheric heights. Aims. We combined high-resolution observations of NOAA 12418 from the Dunn Solar Telescope and vector magnetic field measurements from the Helioseismic and Magnetic Imager (HMI) to determine the driver of the IEF. Methods. We derived chromospheric line-of-sight (LOS) velocities from spectra of H α and Ca  II IR. The HMI data were used in a non-force-free magnetic field extrapolation to track closed field lines near the sunspot in the active region. We determined their length and height, located their inner and outer foot points, and derived flow velocities along them. Results. The magnetic field lines related to the IEF reach on average a height of 3 megameter (Mm) over a length of 13 Mm. The inner (outer) foot points are located at 1.2 (1.9) sunspot radii. The average field strength difference Δ B between inner and outer foot points is +400 G. The temperature difference Δ T is anti-correlated with Δ B with an average value of −100 K. The pressure difference Δ p is dominated by Δ B and is primarily positive with a driving force towards the inner foot points of 1.7 kPa on average. The velocities predicted from Δ p reproduce the LOS velocities of 2–10 km s −1 with a square-root dependence. Conclusions. We find that the IEF is driven along magnetic field lines connecting network elements with the outer penumbra by a gas pressure difference that results from a difference in field strength as predicted by the classical siphon flow scenario. 
    more » « less
  3. Vertebrate fossils have been known from Lower Siwalik Miocene deposits surrounding the town of Ramnagar (Udhampur District, Jammu & Kashmir) in northwest India since Barnum Brown’s American Museum of Natural History (AMNH) expedition in 1922. These fossils included dentognathic specimens of Sivapithecus and other Chinji Formation-aged mammals. Paleontological fieldwork has continued sporadically in the Ramnagar region ever since, and in that time, a large number of vertebrate fossils have been recovered by many different researchers and institutions, including the recently discovered primates Kapi and Ramadapis. Ramnagar fossils are currently housed in several institutions across India and the United States, thereby making it challenging to comprehensively study the entire collection. Consequently, a full understanding of important questions related to the taxonomy, paleobiology, paleoecology, and biochronology of the Ramnagar fauna cannot be readily obtained. Moreover, without answers to these questions, correlations and comparisons cannot be accurately made to other similar aged fossil localities in the Siwaliks (i.e., Potwar Plateau, Pakistan) and elsewhere in Eurasia. Therefore, the goal of this collaborative project is to establish and grow a 3D digital repository of all fossil specimens from the Ramnagar region for continued comprehensive study. We employ µCT, surface scanning, and photogrammetry to virtually bring together specimens from the AMNH, Panjab University, Wadia Institute of Himalayan Geology, and Yale Peabody Museum. Thus far, >100 specimens have been digitized and made openly accessible on the MorphoSource web platform. Here we highlight some of the best-preserved specimens, including recovered primates and micromammals, and discuss their scientific importance. 
    more » « less