- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Choudhuri, Arka Rai (2)
-
Jain, Abhishek (2)
-
Beck, Gabrielle (1)
-
Garg, Sanjam (1)
-
Green, Matthew (1)
-
Jin, Zhengzhong (1)
-
Tiwari, Pratyush Ranjan (1)
-
Zhang, Jiaheng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Beck, Gabrielle; Choudhuri, Arka Rai; Green, Matthew; Jain, Abhishek; Tiwari, Pratyush Ranjan (, Proceedings on Privacy Enhancing Technologies)In this work we propose time-deniable signatures (TDS), a new primitive that facilitates deniable authentication in protocols such as DKIM-signed email. As with traditional signatures, TDS provide strong authenticity for message content, at least {\em for a sender-chosen period of time}. Once this time period has elapsed, however, time-deniable signatures can be forged by any party who obtains a signature. This forgery property ensures that signatures serve a useful authentication purpose for a bounded time period, while also allowing signers to plausibly disavow the creation of older signed content. Most critically, and unlike many past proposals for deniable authentication, TDS do not require interaction with the receiver or the deployment of any persistent cryptographic infrastructure or services beyond the signing process ( e.g., APIs to publish secrets or author timestamp certificates.) We first investigate the security definitions for time-deniability, demonstrating that past definition attempts are insufficient (and indeed, allow for broken signature schemes.) We then propose an efficient construction of TDS based on well-studied assumptions.more » « less
An official website of the United States government

Full Text Available