skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chowdhary, Sangeeta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper proposes, EFTSanitizer, a fast shadow execution framework for detecting and debugging numerical errors during late stages of testing especially for long-running applications. Any shadow execution framework needs an oracle to compare against the floating point (FP) execution. This paper makes a case for using error free transformations, which is a sequence of operations to compute the error of a primitive operation with existing hardware supported FP operations, as an oracle for shadow execution. Although the error of a single correctly rounded FP operation is bounded, the accumulation of errors across operations can result in exceptions, slow convergences, and even crashes. To ease the job of debugging such errors, EFTSanitizer provides a directed acyclic graph (DAG) that highlights the propagation of errors, which results in exceptions or crashes. Unlike prior work, DAGs produced by EFTSanitizer include operations that span various function calls while keeping the memory usage bounded. To enable the use of such shadow execution tools with long-running applications, EFTSanitizer also supports starting the shadow execution at an arbitrary point in the dynamic execution, which we call selective shadow execution. EFTSanitizer is an order of magnitude faster than prior state-of-art shadow execution tools such as FPSanitizer and Herbgrind. We have discovered new numerical errors and debugged them using EFTSanitizer. 
    more » « less
  2. null (Ed.)
    This paper proposes a new approach for debugging errors in floating point computation by performing shadow execution with higher precision in parallel. The programmer specifies parts of the program that need to be debugged for errors. Our compiler creates shadow execution tasks, which execute on different cores and perform the computation with higher precision. We propose a novel method to execute a shadow execution task from an arbitrary memory state, which is necessary because we are creating a parallel shadow execution from a sequential program. Our approach also ensures that the shadow execution follows the same control flow path as the original program. Our runtime automatically distributes the shadow execution tasks to balance the load on the cores. Our prototype for parallel shadow execution, PFPSanitizer, provides comprehensive detection of errors while having lower performance overheads than prior approaches. 
    more » « less
  3. Posit is a recently proposed alternative to the floating point representation (FP). It provides tapered accuracy. Given a fixed number of bits, the posit representation can provide better precision for some numbers compared to FP, which has generated significant interest in numerous domains. Being a representation with tapered accuracy, it can introduce high rounding errors for numbers outside the above golden zone. Programmers currently lack tools to detect and debug errors while programming with posits. This paper presents PositDebug, a compile-time instrumentation that performs shadow execution with high pre- cision values to detect various errors in computation using posits. To assist the programmer in debugging the reported error, PositDebug also provides directed acyclic graphs of instructions, which are likely responsible for the error. A contribution of this paper is the design of the metadata per memory location for shadow execution that enables productive debugging of errors with long-running programs. We have used PositDebug to detect and debug errors in various numerical applications written using posits. To demonstrate that these ideas are applicable even for FP programs, we have built a shadow execution framework for FP programs that is an order of magnitude faster than Herbgrind. 
    more » « less