skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chowdhry Beeman, Jai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The last deglaciation, which occurred from 18 000 to 11 000 years ago,is the most recent large natural climatic variation of global extent. Withaccurately dated paleoclimate records, we can investigate the timings ofrelated variables in the climate system during this major transition. Here,we use an accurate relative chronology to compare temperature proxy data andglobal atmospheric CO2 as recorded in Antarctic ice cores. In addition tofive regional records, we compare a δ18O stack, representingAntarctic climate variations with the high-resolution robustly dated WAISDivide CO2 record (West Antarctic Ice Sheet). We assess the CO2 and Antarctic temperature phaserelationship using a stochastic method to accurately identify the probabletimings of changes in their trends. Four coherent changes are identified forthe two series, and synchrony between CO2 and temperature is within the95 % uncertainty range for all of the changes except the end of glacial termination 1 (T1). During the onset of the last deglaciation at 18 ka and the deglaciationend at 11.5 ka, Antarctic temperature most likely led CO2 by several centuries (by 570 years, within a range of 127 to 751 years, 68 %probability, at the T1 onset; and by 532 years, within a range of 337 to 629years, 68 % probability, at the deglaciation end). At 14.4 ka, the onsetof the Antarctic Cold Reversal (ACR) period, our results do not show a clearlead or lag (Antarctic temperature leads by 50 years, within a range of−137 to 376 years, 68 % probability). The same is true at the end of the ACR(CO2 leads by 65 years, within a range of 211 to 117 years, 68 %probability). However, the timings of changes in trends for the individualproxy records show variations from the stack, indicating regional differencesin the pattern of temperature change, particularly in the WAIS Divide recordat the onset of the deglaciation; the Dome Fuji record at the deglaciationend; and the EDML record after 16 ka (EPICA Dronning Maud Land, where EPICA is the European Project for Ice Coring in Antarctica). In addition, two changes – one at 16 ka in the CO2 record and one after the ACR onset in three of theisotopic temperature records – do not have high-probability counterparts in the other record. The likely-variable phasing we identify testify to thecomplex nature of the mechanisms driving the carbon cycle and Antarctictemperature during the deglaciation. 
    more » « less