The unmapped readspace of whole genome sequencing data tends to be large but is often ignored. We posit that it contains valuable signals of both human infection and contamination. Using unmapped and poorly aligned reads from whole genome sequences (WGS) of over 1000 families and nearly 5000 individuals, we present insights into common viral, bacterial, and computational contamination that plague whole genome sequencing studies. We present several notable results: (1) In addition to known contaminants such as Epstein-Barr virus and phiX, sequences from whole blood and lymphocyte cell lines contain many other contaminants, likely originating from storage, prep, and sequencing pipelines. (2) Sequencing plate and biological sample source of a sample strongly influence contamination profile. And, (3) Y-chromosome fragments not on the human reference genome commonly mismap to bacterial reference genomes. Both experiment-derived and computational contamination is prominent in next-generation sequencing data. Such contamination can compromise results from WGS as well as metagenomics studies, and standard protocols for identifying and removing contamination should be developed to ensure the fidelity of sequencing-based studies.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Background Sequencing partial 16S rRNA genes is a cost effective method for quantifying the microbial composition of an environment, such as the human gut. However, downstream analysis relies on binning reads into microbial groups by either considering each unique sequence as a different microbe, querying a database to get taxonomic labels from sequences, or clustering similar sequences together. However, these approaches do not fully capture evolutionary relationships between microbes, limiting the ability to identify differentially abundant groups of microbes between a diseased and control cohort. We present sequence-based biomarkers (SBBs), an aggregation method that groups and aggregates microbes using single variants and combinations of variants within their 16S sequences. We compare SBBs against other existing aggregation methods (OTU clustering and
Micropheno orDiTaxa features) in several benchmarking tasks: biomarker discovery via permutation test, biomarker discovery via linear discriminant analysis, and phenotype prediction power. We demonstrate the SBBs perform on-par or better than the state-of-the-art methods in biomarker discovery and phenotype prediction.Results On two independent datasets, SBBs identify differentially abundant groups of microbes with similar or higher statistical significance than existing methods in both a permutation-test-based analysis and using linear discriminant analysis effect size. . By grouping microbes by SBB, we can identify several differentially abundant microbial groups (FDR <.1) between children with autism and neurotypical controls in a set of 115 discordant siblings.
Porphyromonadaceae ,Ruminococcaceae , and an unnamed species ofBlastocystis were significantly enriched in autism, whileVeillonellaceae was significantly depleted. Likewise, aggregating microbes by SBB on a dataset of obese and lean twins, we find several significantly differentially abundant microbial groups (FDR<.1). We observedMegasphaera andSutterellaceae highly enriched in obesity, andPhocaeicola significantly depleted. SBBs also perform on bar with or better than existing aggregation methods as features in a phenotype prediction model, predicting the autism phenotype with an ROC-AUC score of .64 and the obesity phenotype with an ROC-AUC score of .84.Conclusions SBBs provide a powerful method for aggregating microbes to perform differential abundance analysis as well as phenotype prediction. Our source code can be freely downloaded from
http://github.com/briannachrisman/16s_biomarkers . -
Abstract Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder influenced by both genetic and environmental factors. Recently, gut dysbiosis has emerged as a powerful contributor to ASD symptoms. In this study, we recruited over 100 age-matched sibling pairs (between 2 and 8 years old) where one had an Autism ASD diagnosis and the other was developing typically (TD) (432 samples total). We collected stool samples over four weeks, tracked over 100 lifestyle and dietary variables, and surveyed behavior measures related to ASD symptoms. We identified 117 amplicon sequencing variants (ASVs) that were significantly different in abundance between sibling pairs across all three timepoints, 11 of which were supported by at least two contrast methods. We additionally identified dietary and lifestyle variables that differ significantly between cohorts, and further linked those variables to the ASVs they statistically relate to. Overall, dietary and lifestyle features were explanatory of ASD phenotype using logistic regression, however, global compositional microbiome features were not. Leveraging our longitudinal behavior questionnaires, we additionally identified 11 ASVs associated with changes in reported anxiety over time within and across all individuals. Lastly, we find that overall microbiome composition (beta-diversity) is associated with specific ASD-related behavioral characteristics.