skip to main content


Search for: All records

Creators/Authors contains: "Christensen, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Quantum fluctuations in low-dimensional systems and near quantum phase transitions have significant influences on material properties. Yet, it is difficult to experimentally gauge the strength and importance of quantum fluctuations. Here we provide a resonant inelastic x-ray scattering study of magnon excitations in Mott insulating cuprates. From the thin film of SrCuO2, single- and bi-magnon dispersions are derived. Using an effective Heisenberg Hamiltonian generated from the Hubbard model, we show that the single-magnon dispersion is only described satisfactorily when including significant quantum corrections stemming from magnon-magnon interactions. Comparative results on La2CuO4indicate that quantum fluctuations are much stronger in SrCuO2suggesting closer proximity to a magnetic quantum critical point. Monte Carlo calculations reveal that other magnetic orders may compete with the antiferromagnetic Néel order as the ground state. Our results indicate that SrCuO2—due to strong quantum fluctuations—is a unique starting point for the exploration of novel magnetic ground states.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Magnetar giant flares are rare and highly energetic phenomena observed in the transient sky whose emission mechanisms are still not fully understood. Depending on the nature of the excited modes of the magnetar, they are also expected to emit gravitational waves (GWs), which may bring unique information about the dynamics of the excitation. A few magnetar giant flares have been proposed to be associated with short gamma-ray bursts. In this paper we use a new gravitational-wave search algorithm to revisit the possible emission of GWs from four magnetar giant flares within 5 Mpc. While no gravitational-wave signals were observed, we discuss the future prospects of detecting signals with more sensitive gravitational-wave detectors. In particular, we show that galactic magnetar giant flares that emit at least 1% of their electromagnetic energy as GWs could be detected during the planned observing run of the LIGO and Virgo detectors at design sensitivity, with even better prospects for third-generation detectors. 
    more » « less
  3. null (Ed.)
    ABSTRACT The detection of the optical transient AT2017gfo proved that binary neutron star mergers are progenitors of kilonovae (KNe). Using a combination of numerical-relativity and radiative-transfer simulations, the community has developed sophisticated models for these transients for a wide portion of the expected parameter space. Using these simulations and surrogate models made from them, it has been possible to perform Bayesian inference of the observed signals to infer properties of the ejected matter. It has been pointed out that combining inclination constraints derived from the KN with gravitational-wave measurements increases the accuracy with which binary parameters can be estimated, in particular breaking the distance-inclination degeneracy from gravitational wave inference. To avoid bias from the unknown ejecta geometry, constraints on the inclination angle for AT2017gfo should be insensitive to the employed models. In this work, we compare different assumptions about the ejecta and radiative reprocesses used by the community and we investigate their impact on the parameter inference. While most inferred parameters agree, we find disagreement between posteriors for the inclination angle for different geometries that have been used in the current literature. According to our study, the inclusion of reprocessing of the photons between different ejecta types improves the modeling fits to AT2017gfo and, in some cases, affects the inferred constraints. Our study motivates the inclusion of large ∼ 1-mag uncertainties in the KN models employed for Bayesian analysis to capture yet unknown systematics, especially when inferring inclination angles, although smaller uncertainties seem appropriate to capture model systematics for other intrinsic parameters. We can use this method to impose soft constraints on the ejecta geometry of the KN AT2017gfo. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)