Observed scatter in the Ly
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract α opacity of quasar sightlines atz < 6 has motivated measurements of the correlation between Lyα opacity and galaxy density, as models that predict this scatter make strong and sometimes opposite predictions for how they should be related. Our previous work associated two highly opaque Lyα troughs atz ∼ 5.7 with a deficit of Lyα emitting galaxies (LAEs). In this work, we survey two of the most highly transmissive lines of sight at this redshift toward thez = 6.02 quasar SDSS J1306+0356 and thez = 6.17 quasar PSO J359-06. We find that both fields are underdense in LAEs within 10h −1Mpc of the quasar sightline, somewhat less extensive than underdensities associated with Lyα troughs. We combine our observations with three additional fields from the literature and find that while fields with extreme opacities are generally underdense, moderate opacities span a wider density range. The results at high opacities are consistent with models that invoke UV background fluctuations and/or late reionization to explain the observed scatter in intergalactic medium (IGM) Lyα opacities. There is tension at low opacities, however, as the models tend to associate lower IGM Lyα opacities with higher densities. Although the number of fields surveyed is still small, the low-opacity results may support a scenario in which the ionizing background in low-density regions increases more rapidly than some models suggest after becoming ionized. Elevated gas temperatures from recent reionization may also be making these regions more transparent. -
ABSTRACT The mean free path of ionizing photons, λmfp, is a key factor in the photoionization of the intergalactic medium (IGM). At z ≳ 5, however, λmfp may be short enough that measurements towards QSOs are biased by the QSO proximity effect. We present new direct measurements of λmfp that address this bias and extend up to z ∼ 6 for the first time. Our measurements at z ∼ 5 are based on data from the Giant Gemini GMOS survey and new Keck LRIS observations of low-luminosity QSOs. At z ∼ 6 we use QSO spectra from Keck ESI and VLT X-Shooter. We measure $\lambda _{\rm mfp} = 9.09^{+1.62}_{-1.28}$ proper Mpc and $0.75^{+0.65}_{-0.45}$ proper Mpc (68 per cent confidence) at z = 5.1 and 6.0, respectively. The results at z = 5.1 are consistent with existing measurements, suggesting that bias from the proximity effect is minor at this redshift. At z = 6.0, however, we find that neglecting the proximity effect biases the result high by a factor of two or more. Our measurement at z = 6.0 falls well below extrapolations from lower redshifts, indicating rapid evolution in λmfp over 5 < z < 6. This evolution disfavours models in which reionization ended early enough that the IGM had time to fully relax hydrodynamically by z = 6, but is qualitatively consistent with models wherein reionization completed at z = 6 or even significantly later. Our mean free path results are most consistent with late reionization models wherein the IGM is still 20 per cent neutral at z = 6, although our measurement at z = 6.0 is even lower than these models prefer.more » « less
-
Abstract The observed large-scale scatter in Ly α opacity of the intergalactic medium at z < 6 implies large fluctuations in the neutral hydrogen fraction that are unexpected long after reionization has ended. A number of models have emerged to explain these fluctuations that make testable predictions for the relationship between Ly α opacity and density. We present selections of z = 5.7 Ly α -emitting galaxies (LAEs) in the fields surrounding two highly opaque quasar sightlines with long Ly α troughs. The fields lie toward the z = 6.0 quasar ULAS J0148+0600, for which we reanalyze previously published results using improved photometric selection, and toward the z = 6.15 quasar SDSS J1250+3130, for which results are presented here for the first time. In both fields, we report a deficit of LAEs within 20 h −1 Mpc of the quasar. The association of highly opaque sightlines with galaxy underdensities in these two fields is consistent with models in which the scatter in Ly α opacity is driven by large-scale fluctuations in the ionizing UV background or by an ultra-late reionization that has not yet concluded at z = 5.7.more » « less
-
Abstract The mean free path of ionizing photons,
λ mfp, is a critical parameter for modeling the intergalactic medium (IGM) both during and after reionization. We present direct measurements ofλ mfpfrom QSO spectra over the redshift range 5 <z < 6, including the first measurements atz ≃ 5.3 and 5.6. Our sample includes data from the XQR-30 VLT large program, as well as new Keck/ESI observations of QSOs nearz ∼ 5.5, for which we also acquire new [Cii ] 158μ m redshifts with ALMA. By measuring the Lyman continuum transmission profile in stacked QSO spectra, we find , , , and pMpc atz = 5.08, 5.31, 5.65, and 5.93, respectively. Our results demonstrate thatλ mfpincreases steadily and rapidly with time over 5 <z < 6. Notably, we find thatλ mfpdeviates significantly from predictions based on a fully ionized and relaxed IGM as late asz = 5.3. By comparing our results to model predictions and indirectλ mfpconstraints based on IGM Lyα opacity, we find that the evolution ofλ mfpis consistent with scenarios wherein the IGM is still undergoing reionization and/or retains large fluctuations in the ionizing UV background well below redshift 6. -
Abstract We present a new investigation of the intergalactic medium (IGM) near the end of reionization using “dark gaps” in the Ly α forest. Using spectra of 55 QSOs at z em > 5.5, including new data from the XQR-30 VLT Large Programme, we identify gaps in the Ly α forest where the transmission averaged over 1 comoving h −1 Mpc bins falls below 5%. Nine ultralong ( L > 80 h −1 Mpc) dark gaps are identified at z < 6. In addition, we quantify the fraction of QSO spectra exhibiting gaps longer than 30 h −1 Mpc, F 30 , as a function of redshift. We measure F 30 ≃ 0.9, 0.6, and 0.15 at z = 6.0, 5.8, and 5.6, respectively, with the last of these long dark gaps persisting down to z ≃5.3. Comparing our results with predictions from hydrodynamical simulations, we find that the data are consistent with models wherein reionization extends significantly below redshift six. Models wherein the IGM is essentially fully reionized that retain large-scale fluctuations in the ionizing UV background at z ≲6 are also potentially consistent with the data. Overall, our results suggest that signatures of reionization in the form of islands of neutral hydrogen and/or large-scale fluctuations in the ionizing background remain present in the IGM until at least z ≃ 5.3.more » « less
-
Abstract We present a new investigation of the intergalactic medium near reionization using dark gaps in the Ly
β forest. With its lower optical depth, Lyβ offers a potentially more sensitive probe to any remaining neutral gas compared to the commonly used Lyα line. We identify dark gaps in the Lyβ forest using spectra of 42 QSOs atz em> 5.5, including new data from the XQR-30 VLT Large Programme. Approximately 40% of these QSO spectra exhibit dark gaps longer than 10h −1Mpc atz ≃ 5.8. By comparing the results to predictions from simulations, we find that the data are broadly consistent both with models where fluctuations in the Lyα forest are caused solely by ionizing ultraviolet background fluctuations and with models that include large neutral hydrogen patches atz < 6 due to a late end to reionization. Of particular interest is a very long (L = 28h −1Mpc) and dark (τ eff≳ 6) gap persisting down toz ≃ 5.5 in the Lyβ forest of thez = 5.85 QSO PSO J025−11. This gap may support late reionization models with a volume-weighted average neutral hydrogen fraction of 〈x H I〉 ≳ 5% byz = 5.6. Finally, we infer constraints on 〈x H I〉 over 5.5 ≲z ≲ 6.0 based on the observed Lyβ dark gap length distribution and a conservative relationship between gap length and neutral fraction derived from simulations. We find 〈x H I〉 ≤ 0.05, 0.17, and 0.29 atz ≃ 5.55, 5.75, and 5.95, respectively. These constraints are consistent with models where reionization ends significantly later thanz = 6.