skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chu, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Equations of motion for compressible point vortices in the plane are obtained in the limit of small Mach number, M , using a Rayleigh–Jansen expansion and the method of Matched Asymptotic Expansions. The solution in the region between vortices is matched to solutions around each vortex core. The motion of the vortices is modified over long time scales O ( M 2 log ⁡ M ) and O ( M 2 ) . Examples are given for co-rotating and co-propagating vortex pairs. The former show a correction to the rotation rate and, in general, to the centre and radius of rotation, while the latter recover the known result that the steady propagation velocity is unchanged. For unsteady configurations, the vortex solution matches to a far field in which acoustic waves are radiated. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’. 
    more » « less
  2. Data-sensitive metrics adapt distances locally based the density of data points with the goal of aligning distances and some notion of similarity. In this paper, we give the first exact algorithm for computing a data-sensitive metric called the nearest neighbor metric. In fact, we prove the surprising result that a previously published 3-approximation is an exact algorithm. The nearest neighbor metric can be viewed as a special case of a density-based distance used in machine learning, or it can be seen as an example of a manifold metric. Previous computational research on such metrics despaired of computing exact distances on account of the apparent difficulty of minimizing over all continuous paths between a pair of points. We leverage the exact computation of the nearest neighbor metric to compute sparse spanners and persistent homology. We also explore the behavior of the metric built from point sets drawn from an underlying distribution and consider the more general case of inputs that are finite collections of path-connected compact sets. The main results connect several classical theories such as the conformal change of Riemannian metrics, the theory of positive definite functions of Schoenberg, and screw function theory of Schoenberg and Von Neumann. We also develop some novel proof techniques based on the combination of screw functions and Lipschitz extensions that may be of independent interest. 
    more » « less